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Introduction to Harmonic Analysis and Maximal Functions 3

1. Introduction and Notation

In this paper we first extend the definition of the Fourier transform, and then state some im-
portant and fundamental results, especially about some convergence results. Unless otherwise
stated, we will use the Lebesgue measure in R"™.

1.1. Extension of the Fourier transform
For a function f € L!(R") we define its Fourier transform by

G O
Rn

where & € R". The map
F:|LYR" +— L>(R")
fo—f
is then a bounded linear operator. All the basic results about the Fourier transform can be found

in [1]. The notation R is just another notation for R, but it’s useful to show that we are working
the frequency space. However let’s recall some important results.

Theorem 1.1 (Plancherel). F can be extended as a bijective operator L2 (R") —s L2(R").
Furthermore if f € L2(R"), then

1Al = 1z gy

We still denote F this extended operator. Since F is well defined on L*(R"™) and on L2(R"),
we can define it by interpolation on LP(R"™) for 1 < p < 2.

Theorem 1.2 (Riesz-Thorin Interpolation). Let 1 < po,p1,9,q1 < oo, and for 0 < 6 < 1
define p and q by

1 1-6 40 1 1-6 6
= + +
p Po b1 q 40 il
If T is a linear operator from LPO(R™) + LP1(R"™) to L®(R™) + L% (R"™) such that

1T fllLo®e) < CollfllLromny. f € LP(R")
and
ITfllLa@mny < CillfllLegny, f € LPH(RY)

Where Cy, Cy are some real constant. Then T is defined on LP(R™) and
ITfllLomny < Co~CLl fllromny,  f € LP(R™).

The proof can be found in [9]. We apply this theorem with the Fourier transform F and with
the inequalities

HfHLoo(ﬁn) < | flluymny and HfHLz(ﬁn) = [ fllL2mr)-
Corollary 1.3 (Hausdorff-Young inequality). Let 1 < p < 2. If f € LP(R") then f € L? (R")
and

1l @y < I leeny-
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1.2. Convergence result

One of the main problem in harmonic analysis is to make sense of the inversion formula
fla)= [ F&)e*mede (1.1)
R’ﬂ

for z € R™. If f € LY(R") and f € Ll(f{”) then (1 1) holds for almost every z € R". But we
saw that if f € LP(R") for 1 < p < 2, then f e L¥ (R”) and so there is nothing to ensure the
integrability of f However the function f is at least locally integrable. So we can define the
partial Fourier integrals,

Spf:x e R"+— Sgf(x) = /[ - f(i)e%”fdg

for f e IP(R"), 1 < p < 2, and R > 0. So one of the main problem in harmonic analysis is
to study the convergence of Spf as R — co. We have two results of convergence for the Fourier
integrals.

Theorem 1.4 (M. Riesz). Let 1 <p < 2. If f € LP(R") then
ISR = fllue ey - 0-
Theorem 1.5 (Carleson-Hunt). Let 1 <p < 2. If f € LP(R"), then

Srf —— f, almost everywhere.
R—oo

Proving these results are quite complicated, and we are not going to prove it here. However,
we will introduce in this paper some basic tools and some important theories in harmonic analysis.
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2. The Hardy-Littlewood Maximal Function

We use in this paper the notation of the average §, ie

ﬁfdu = /LSA)/Afdu-

B, designates the ball centered at the origin and with a radius . We note B(x,r) for the ball
of radius r centered on .

2.1. Introduction and definition

Definition 2.1. For f € L{ (R"), we define the average operator associated to f as

Arf(x) = . f(r —y)dy,

where r > 0 and x € R".

We can interpret the average operator as a convolution, for r > 0 and f € L%OC(R”) :

A7‘f = XB, * f

|Br|

A simple consequence of Young’s inequality shows that for all f € LP(R"),if 1 < p < oo,

[ArfllLe ey < [1f e @n)- (2.1)

Definition 2.2. For f € LL (R"), we define the associated Hardy-Littlwood maximal func-
tion as

My f(z) := sup 4| f|(z),
r>0

where x € R™.

A priori, this quantity could be equal to oco. Sometimes it could be useful to consider this
maximal function on some cubes centered on x € R”, and not necessarily on balls. That’s why
we introduce the equivalent function

Mg f(z) = sup ][ (@ — y)ldy

r>0JQ,

where @, := [—r,r|". We can assume that these functions are equivalent in a certain way because
there are some constants ¢, C}, such that

enMif(z) < Muvf(z) < CoMyyf(2), (2.2)
for all x € R™. In fact, any cubes contain a smaller ball inversely.

Example 2.3. Let f := xp, where B denotes the unit ball centered at the origin in R™. The
notation < means < C where C is a constant. In this case

|B N Bz, 2|z])|

M >
) > B alal)

< (L4 [z)™"

for all » > 0 and x € R".
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This example show that, unlike the average operator A, (see (2.1)), the Hardy-Littlewood
maximal function is not bounded in L'(R™). Indeed

/n(1 ) ""de = oo.

However, we will prove that My, function is bounded on LP(R"™) for 1 < p < oo, and also
admits some "weak-bound" on L!(R™). The following result shows the important of the Hardy-
Littlewood maximal function, especially to study some approximations of the identity.

Proposition 2.4. Let ¢ : R — R be a function which is positive, radial, decreasing, and
integrable. We note fort >0

or =ttt ).
Then
igg\% * f(2)] < llelluywyMnrf(z)
for all z € R and for all f € L _(R).

loc

Like we said, this theorem can be very interesting if {¢;}; is an approximation of the identity.
So it would be useful to obtain some bounds for Mpyy,.

2.2. The Marcinkiewicz interpolation theorem

Definition 2.5. Let (X, ), (Y, v) be two measure spaces and 7" an operator from LP(X, i) into
the space of measurable complex-valued functions ¥ — C, with 1 < p < oco. We say that

e T is weak (p,q), for g < oo, if

s> op 5 (o)

for all A > 0 and for all f € LP(X, u).
e T is weak (p,00) if T is a bounded operator from LP(X, u) to L=(Y,v).
e T is strong (p,q) if T is a bounded operator from LP(X, u) to LY(Y,v), ie
1T fllLacv,y S I lluecx o
for all f € LP(X, p).
Proposition 2.6. A strong (p,q) operator is weak (p,q).

Proof. Let’s use the notation of the previous definition. Let f € LP(X,v) et A > 0. We assume
that ¢ < oo (otherwise the result is obvious). Then

LT > M) = /{Tf|>>\} WS /{Tf>”

Since T is strong (p, q), we have

q

Tf(y)

< HTfH%q(Rn)
b\ —_—.

dy(y) ~ )\q

wqirs = op 5 (e

which concludes the proof. O
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Definition 2.7. An operator T from a vector space of measurable functions F into another
space of measurable functions is said to be sublinear if

T(fo+ O < TfOI+ITAHCL Vi, freF,
TGOl =I[AMITSl, VfeFVreC.
Example 2.8. The Hardy-Littlwood maximal function is a sublinear operator.

Theorem 2.9 (Marcinkiewicz Interpolation). Let (X, u), (Y,v) be two measure spaces and let
T be a sublinear operator from LPO(X, u) + LPL(X, u), with 1 < po < p1 < oo. We assume that
T is weak (po,po) and weak (p1,p1). Then T is strong (p,p) for all py < p < p;.

We already mentioned an interpolation theorem with the theorem of Riesz-Thorin for the
linear operator. We introduce a new one, which applies to the sublinear operator. So with this
theorem, it can be enough to prove some weak bounds on the operators, and it is often easier,
hence the interest of this theorem. The following lemma will help us to prove it.

Lemma 2.10. Let (X, pn) be a measured space and f € LP(X, ). Then

oy =2 [ 2 (171> A3)ax

Proof of the lemma. We notice that for all x € X,

| f(2)]
Iﬂ@W=p/ AL,
0

Then

()]
[paloeees // pAPLdAdp(z),
X JO

by Fubini-Tonelli’s theorem we can switch the integrals

Ay e / / pA" dAdpi(z
1 1Ep ey = 0 J{zeX:|f(z)[>A} .

=pAmV”Mﬂﬂ>AHM

Let’s move on the proof of Marcinkiewicz’s theorem.

Proof of the theorem. Let f € LP(X, ), for po < p < p1, and let A > 0. We give us a constant
¢, which the value will be fixed later. We decompose f as fo + fi1, where

Jo = IXxXqy>en

and
J1 =X <eny

(we decompose f as a sum of her large values and her small values). Since pg < p, we can write

[l an= [P e < P <

By an analogous proof, we can conclude that fy € LP°(X,pu) and f; € LPY (X, u). Since T is a
sublinear operator from LPO(X, u) + LP (X, ), we have for all x € X

Tf (@) < |Tfo(z)| + [T fi(x)]-
Comparating |T fo(z)| and |T f1(z)|, we obtain
n({ITFI > A}) < p(ITfol > A/2}) + n({ITHI > A/2}).

We consider two cases.
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e If p; = oo. By the weak (po,po) and (p1,p1) inequalities, there exist two constants Ag, A;
such that

w{|T fol > A/2}) < <2A0Hf0||Lpo Xu)>p0 (2.3)

and
1T f1llLee (x,) < Al fillnee (x,p)-

So by choosing ¢ = 1/2A4;, we have

n({ITfil > A/2}) < p({Alfil > A/2}) = 0.

Hence, by using the lemma 2.10 and the weak inequality (2.3),

o0
T Wiy < 2 [ Il > 3/2})ax

< p(240)P° / Ap—po—l / | FIPodudA.
0 {If1>e}

Fubini-Tonelli’s theorem allows us to conclude,

|f(@)]/e
HTfHLP(X“) p(240)" / |f(z ‘po/o NPt qNd ()

— APO AP Po f
— [F{[

e If p; < oo. This time we have

uGWM>AmDssGA me@)i

for i € {0,1}. From this we get, after a similar calculation,

cplp »
280 e CO 0 )

I s < o (

In both cases, we can assert that 7" is strong (p, p). O
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2.3. Dyadic maximal operator

In harmonic analysis, it is often easier to work on discrete objects instead of continous object.
This one of the reason for us to introduce a decomposition of R™ into some cubes of different
length : the dyadic cubes.

2.3.1. Dyadic cubes

Definition 2.11. A dyadic cube in R" is a subset of the form

Q = [[k;2", (k; + 1)27]

i=1

where hy,...,k, € Z and r € Z. For a such cube @, we define his length by [(Q) := 2". We
denote by D" the collection of dyadic cubes in R™, and

D ={QeD":1(Q)=2"}.
From the definition we can easily deduce the following propositions.

Proposition 2.12. (i) For all x € R" and for all r € Z, there exists a unique cube Q € D}
such that © € Q.

(ii) Two dyadic cubes are either disjoint or one contains the other.
(#91) If r,s € Z with r < s, then each cube Q € D} is contained in a unique cube in DY.

Let’s represent some of these cubes in the portion of plane [—1, 1] x [~1, 1] of R2. For a given
x, it’s clear that for each fixed length, x lies in a unique dyadic cube.

R > R e «

Q) =2 Q) =1 Q)

Figure 1: [-1,1]>N D2, r € {-1,0,1}.

2.3.2. Dyadic maximal function

Definition 2.13. For f € Li (R") and k € Z, we note

loc
5@ = 3 (f 1) 100

QeDy

ou x € R™. We define the dyadic maximal function associated to f as

Mg f(z) := sup Eg|f|(z).
KezZ
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The operators {Ey : k € Z} satisfy the fundamental identity : if € is the union of cubes in

DP then
/ﬂ Byf = /ﬂ / (2.4)

for all f € LL_(R"). Hence, {Ey : k € Z} can be seen as a discrete approximation of the
identity.

Theorem 2.14. The dyadic mazimal function is weak (1,1).

Proof. Let f € LY(R™). Because of the definition of M, we may assume that f is non-negative.
For k € Z we define the set )}, as

Qp:={z e R": Eyf(x) > and E;f(x) < Aif j > k}.

Then we can see that

{z eR": Myf(x) > 2} = | | .
keZ

In fact, if x € R™ is such that Myf(z) > A, then the sets {k € Z : Eyf(z) > A} are not
empty. Since Ejf(x) — 0 as k — oo (because f € LY(R")), we are allowed to choose k as the
maximum of these sets. The other implication is obvious. In summary, x € Qy if Erf(x) is the
last expectation of f which is greater than A. By writting each of the disjoint sets €; as the
union of cubes in D}, we have

{z € R™: Maf(x) > A} = |l
keZ

<> E%f

ez’
Then by using the identity (2.4) :
1
{z e R": Myf(z) > \}| < XZ f
Q
keZ "k
1
< XHfHLl(R”)-
The last inequality concludes the proof : My is weak (1,1). O]

It’s quite obvious that My is strong (0o, 00). Then by the Marcinkiewicz interpolation theo-
rem we immedialty have the following corollary.

Corollary 2.15. Let 1 < p < oo. The dyadic mazimal function is strong (p,p), ie for all
f e LP(RY)
[ Mafllie@mny S I llee@ny-

2.4. Hardy-Littlewood maximal theorem

Theorem 2.16 (Hardy-Littlewood maximal theorem). (i) Let 1 < p < oo. The Hardy-
Littlewood mazimal function Myy, is strong (p,p), ie for all f € LP(R™)

[Muvlle ey S I1fllLe@e)-

(ii) The Hardy-Littlewood mazimal function My, is weak (1,1).
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The theorem is clear for p = co, and we already in the seen example 2.3 that the result isn’t
true for p = 1. The Hardy-Littlewood maximal function is weak (0o, 00), so by the Marcinkiewicz
interpolation theorem it suffices to prove the second part of the theorem.

Proof. Let f be an integrable function and A > 0. We may assume that f is a non-negative
function (because My |f| = M{y f). We are going to prove that

Ho e R™: Miy f(z) > 4"} < 2"[{z € R™: Myf(x) > A} (2.5)

We recall that MI/{L is the maximal function defined on cubes. We saw that these two maximal
functions are kind of equivalent (see inequalities (2.2)). By the theorem 2.14, we know that

[RAIFREG:1)
—
Let’s prove the inequality (2.5). As before, we are able to find some cubes {Q;}; such that

{x e R": Myf(x) > \} :UQi

{z e R": Maf(z) > A} < (2.6)

(see the proof of the theorem 2.14). Let Q7 be the cube with the same center as @; and whose
sides are twice as long : [(QF) = 20(Q;). We fix an = ¢ U;Q;, and we denote by @ a cube
centered at . Let k € Z be the integer such that 2¥~! < [(Q) < 2. Then @ intersects at the

maximum 2" cubes in D} (see figure 2). Let Ry, ..., Ry, be these cubes, with m < 2".
Q1
1 L]
Q@2
9 L]
« —Q—k— >
Figure 2

If one of these cubes is contained in a cube @Q);, we would have x € U;Q);, which is false. In
fact if there exist some indexes 4,7 such that R; C @;, we would have on the on hand x € Q
and on the other hand R} C Q. But 1(Q) < 2% sox € R}. We finally got € Q7. Hence the
average of f on each cube {R;}; is at most A\. Then we have

1 i 1 m okn
=11 / F< =) 24 f < ——mA < 47N
AP RAS D R
So we just proved that
e err sty > ) c o
Hence

Hz € R": My f(x) > 4"} < 27 =2"{z € R" : Myf(z) > \}|

UQZ»

which is the inequality (2.5). By using (2.5) and (2.6) we finally have

£l memy
)\ )
which concludes the proof. O

{z € R™: Mypf(z) > A} S
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3. Maximal Function

3.1. Almost everywhere convergence
There is a relationship between weak (p, ¢) inequalities and almost everywhere convergence, and
it is given by the following result.

Lemma 3.1. Let (X, u) be a measure space, 1 < p,q < oo and {T;}ica be a family of linear
operators on LP(X, u), with A C (0,00). Let ty € [0,00] be a limit point of A. We introduce the
maximal operator associated with the family {T;}; :

T f:x— T f(z) :=sup |T,f(2)].
teA
If T* is weak (p,q), then the set
{f e LP(X,u): tli_gl T, f(x) = f(x) almost everywhere }
0

is closed in LP(X, u).

Example 3.2. The maximal operator associated to the family { A, |-|},~¢ is the Hardy-Littlewood
maximal function.

With the same assumptions as in the previous lemma, we obtain the following theorem, which
is a direct consequence from the sequential characterisation of closed spaces.

Theorem 3.3. Futhermore, if we assume that there exist a dense subspace D C LP(X, 1) such
that for all f € D
lim T f(x) = f(x) for p-a.e x € X.

t—to

Then for all f € LP(X, u)

lim T} f(z) = f(z) for p-a.e x € X.

t—to

Let’s demonstrate the lemma.

Proof. Let {fn}nen be a sequence of fucntions which converges to another function f in LP(X, u)
norm, and such that for all n € N and for p-almost every x € X, limy_y;, T; fn(z) = fn(z). We
are going to show that lim; ., T3 f(x) = f(z) for p-almost every x € X. We temporarily fix a
real 7 > 0, and we will see that the quantity u({z € X : limsup, ,, [T3f(x) — f(z)] > A}) is
equal to 0. In fact we have :

p({z e X: h?iitlp Tef(x) = f(@)] > A}) = p({z € X dimsup [T (f — fo)(z) — (f = fo)(@)| > A})

t—to
S p({z e X:TH(f = fa)(z) > A/2})
+u({z e X |(f = fa)l)] > A/2}).
We assumed that the 770 is weak (p, q), so the first term can be bounded by

= (W lroem )
~ A

which tends to 0 as n — oo. The second term can be bounded by using the inequality of Markov

< <2HfHLP(X)>p
A

and this bound also tends to 0 as n — oco. Finally u({z € X : limsup, ,, [T3f(x) — f(z)] >
A}) =0 for all A > 0. To conclude, it suffices to write

pu({z € X limsup [Ty f(2) — f(2)] > 0}) < > p({x € X :limsup | Ty f(z) — f(z)] > 1/k}) = 0.
—to =1 t—to
0
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3.2. Lebesgue differentiation theorem

The operators { Ej } ez are linear, and the maximal operator associated is

f € Llloc(Rn> —— sup ’Ekf‘ .
kEZ

Since for all f € LL _(R™), supyez |Fxf| < Mgf, this maximal operator is, as the dyadic maximal

loc
function (theorem 2.14), weak (1,1). Futhermore, we know that if f is continuous then

khlfl Eif(z) = f(x) a.e.

The subspace of continuous function on R™ is dense in L!(R"), so by the theorem 3.3 we have
the following result :

Proposition 3.4. For all f € L (R"),

loc

kll)r_n Eyf(z) = f(x) a.e.

Remarque 1. The proposition holds for f € L (R™) because if f € L1(R"), then fxg € L'(R")

loc
for any dyadic cube @, so for almost every x €  and finally for almost every x € R".

We also have a continuous analog of the proposition 3.4, knew as the Lebesgue differentiation
theorem. We know that My, is weak (1,1). Again, by considering the maximal operator

fe LIIOC(R") — sup | A, f],
r>0

we can apply the theorem 3.3 and obtain the followgin result, knew as to be true for the continuous
functions.

Theorem 3.5 (Lebesgue Differentiation Theorem). For all f € L (R™),

loc

lim ]{BT flz —y)dy = f(x) a.e.

r—0t

3.3. The Stein’s maximal principle

We saw that some weak bounds on an maximal operator can bring some convergence results. In
fact the reverse can be true under some assumptions : it’s the Stein maximal principle.

3.3.1. Statement and applications

Theorem 3.6. Let {1} jen be a sequence of finite Borel measures on R". We assume that they
are all supported on a fired compact Qo :=[—1/2,1/2)", ie

VjeN, supp(y;) C Qo.
Let M be a mazximal function of the form

M f(x) ZJSéllglfl*uj(w) (3.1)

where f € LP(R™), 1 < p< oo and x € R™. Assume for each f € LP(R"™) we have
Mf(z) < oo, for all x lying in a set of positive measure.

Then M is weak (p,p).
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The assumptions about the form of the maximal function and about the measures are nec-
essary. In fact the result isn’t true all the time. It suffices to consider the the family of linear
operator

T.: | L'(R) — LYR)
1
f > X[kk+1] fo /

for k € N. Here for f € LY(R) and # € R we clearly have

1
71 (0) = sup 13 ()] = ] / f] < Il < .

However T is not weak (1,1). If it was the case, we would have for all A > 0

e R T s> N = [ R: | [ 4] > < LI,

By choosing A := Uol f‘ /2 (and f such that A # 0), we obtain a contradiction, the left term is

equal to oo.
We can write an anolog of the Hardy-Littlewood maximal function as a function of the form
(3.1). We introduce the operator

M*f(z) = sup ][ F(e— )y,
o<r<1/2J B,
reQ

where f € Llloc(R”) and z € R™. Let {r;};cn be a sequence of rationals such that lim;_,, 7; = 0.

By the theorem 3.5 we know that

lim £ f(z —y)dy = f(z)

1— 00 B,
2

for almost every x € R™. In particular, this implies that M*f(xz) < oo almost everywhere,
whenever f € L'(R"™), so by the Stein maximal principle asserts that M* is weak (1,1). We can
show that M* is weak (1,1) (and strong (p,p)) if and only if My, is. In summary,

’Lebesgue Differentiation Theorem <= Stein’s Maximal Principle. ‘

Another application is the study of convergence problem for Fourier integrals. We already
talk about it in the introduction, see theorem 1.4 and theorem 1.5. We can use the Stein’s
maximal principle and the theory of the maximal function to study some convergence problems.

Definition 3.7. Let f € LP(R"), 1 < p < 2. We define the Carleson maximal operator by

Cf(x):= ;1;%|5Rf($)|

for x € R™.

In view of the theorem 3.3, the almost everywhere convergence questions for Fourier integrals
are equivalent to a weak (p,p) bound for the Carleson maximal operator C.

Proposition 3.8. Let 1 < p < 2. The following are equivalent :
(i) For all f € LP(R™)

lim Sgf(x) = f(x), for almost every x € R".

R—o0

(73) C is weak (p,p).
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Proving some bounds for the operator C is a very difficult task. We often consider an analog
version of the Carleson maximal operator, which is easier to bound, and still gives us some
interesting results.

Definition 3.9. Let f € LP(R"), 1 < p < 2. We define the lacunary Carleson maximal
operator by

Clacf(x) ‘= Sup |S2kf(x)‘
keN
for x € R™.

Let’s move on the proof of the Stein’s maximal principle.

3.4. Proof

Before proving the Stein’s maximal principle, we present three technical lemmas, the proofs of
these results can be found in [6].

Lemma 3.10 (Local reduction). Let M be a mazimal function of the form (3.1), and 1 < p <
oo. Assume that for all X > 0 and for all f € LP(R") with supp(f) C Qf := [—1,1)" we have

P
e Qo arp(e) > 3y 5 (HEn )
Then M is weak (p,p).

Lemma 3.11 (Random translation). Let E C Qo be a measurable set with |E| > 0. Then there
exist some vectors x1,...,xy € Q4 with J < 1/|E|, such that

J
QN | J(E +2j)| = 1/2.

j=1
Lemma 3.12 (Borel-Cantelli-type lemma). Let (Fi)ren+ be a sequence of measurables subsets

of R™ such that
> O |F| =
k=1

Then there exists a sequence of vectors (zy)reNn+ such that

lim sup(Fy, + zx) = ﬂ U (Fj+xj) = R"\N,

k——+o0

for some null set N C R™. Almost every x € R" lies in infinitely many of the translated sets
Er + xp.

We can pass to the proof of the Stein’s maximal principle.

Proof. We are. going to prove the theorem via the negation. Assume that M is not strong (p, p).
By the lemma 3.10, there exists a sequence {gx} € LP(R") and real values A\ > 0 such that

)2k P
gr >0 and ]{a: €Qo: Mgk(x) > )\k}’ = <Hgk||Lp(Rn)>

for all kK € N. By homogeneity, we can replace gi by %’“gk, and so without loss of generality we
may assume that

(o € Qo: Mai(@) > k)| = 2] g ) o (3.2)
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for all k € N. Let fix k € N, and denote
EL = {l’ € Qo : Mgk(x) > k}

In view of the above, |Ej| is large relative to ||gk|]’£p(Rn), it may still have small measure in

absolute terms. We are going to apply the lemma 3.11 on the sets Ej to ensure that |Ey| is large

enough. Let ¥, ... xﬁk be the sequence given by the lemma with J;, < 1/|Ej|. Let

Ji
F.:=QpN U Ey + x5
j=1
and

fr(z):== sup Gi (z), VozecR"
1<j<Jy

where gy j(z) := gr(z — 21 ;) (the translate). Note that for € Ej, + 3, we have by (3.2)

Mfp(xz) = sup Mg (x) > k.
1<75<J,

So
F. C {x S QO : Mfk(l') > ]{7}

By applying the lemma 3.11 we see that
{z € Qo: Mfi(z) >k} > |Fi| = 1/2.

On the other hand, the LP-norms remain small. In fact, since for all z € R" |fp(z)]P <
ng |Gk, (x)[P, it follows that

kaH]ﬁp(Rn X Z HngHLp R") Jk”gk”Lp R")

and then

ka'HLp(Rn) S 27 kp (3.3)

Now we are going to use the functions fi to build another function f which will be very bad for
the maximal function. The sets satisfy |Fj| > 1/2 and clearly > ;2 |F)| = oo. So the lemma
3.12 gives us a sequence of translates (zg)gen+ such that

lim sup(Fy, + zx) = ﬂ U (Fj+xj) = R"\N,
k——+o0 k=1 j—k

where N C R” is a null set. We define f by
f(x) :=sup fr(x), VaeR"
keN

Then

{erO:Mf(x):oo}zﬂU{xEQoiMf(w) > j}

k=1j=k

> Qon () UE +2)) = Qo\N.

k=1j=k

Since |N| =0, M f(x) = oo for almost every x € Qo. On the other hand, with (3.3) we have

(RS Zka” Rn)NZ<OO

so we get a contradiction. O
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3.5. Other geometric maximal function

We give here some examples of geometric maximal function and their main results. We defined
a maximal function on balls (and on cubes), with the Hardy-Littlewood maximal function. We
can wonder what happend if we consider some maximal functions on other geometric shape. In
fact it becomes very complicated very quickly.

3.5.1. The Strong maximal function

Let’s begin by define a maximal function on rectangles with sides parallel to the coordinate axes.
This function is called the strong maximal function, and its defined as below.

Definition 3.13. For f € LL (R™), we define the strong maximal function by

M f(z) = sup ]{1 @ - )ldy

1o >0 TR [—r,mi]

where x € R™.

My has not the same behaviour as Mpygy,. In fact, we can show that for 1 < p < oo, My is
strong (p,p), as Mur. However the strong maximal function is not weak (1,1). We can find a
proof of these results in [6].

3.5.2. The spherical maximal function

Let o be the surface area measure on S”~!. We define a maximal function on the sphere S*~1.

Definition 3.14. For f € C°(R"), we define the spherical maximal function by

Mof(@)i=swd  |fe=ryldo(y

r>0
where x € R".
We have the following result for n > 3.

Theorem 3.15 (Stein, 1976). Let f € LP(R"™), then

Mo fllLe ey Sp 1 llrra)
for all 25 <p < oo.

This result is not very difficult to prove, it is based on geometrical estimations and on some
basic tools of harmonic analysis (discretisation, duality, ... ). The result for n = 2 have been
proved ten years later by Bourgain.

Theorem 3.16 (Bourgain, 1986). Let f € LP(R?), then

Mo fllLr®e) Sp 1 lLeme
forall2 <p < oo.

Let us explain what goes wrong with the case n = 2. In the proof of the Stein’s theorem, we
n—3

have to integrate the function ¢ — (1 —t2)"2 on [~1, 1], but it fails if n = 2. In our problem

it comes from the value of the intersection of tangent circles of a certain thickness §. In fact if

C1, Cs are such circles, we would have
|C1 N Cy| ~ 6372,

See the reference |7] for more details.
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3.5.3. The Nikodym maximal function

Let’s now consider the set Rﬁv for each N,k € N* of all rectangles in R™ centered at the
origin and with the dimension a X --- x a X alN X --- x alN, for any a > 0, and with arbitrary

n—=k k
orientation.

Definition 3.17. For f € L{ (R™), we define the k-plane Nikodym maximal function by

MRk = sup ][ |f(x —y)|dy
ReR%,

where x € R2.
Y. Choi, Y. Koh and J. Lee did the followgin conjecture in [2], for f € LP(R").
Conjecture 3.18. For an NN large enough :
{!Mnkﬂm ®) Spe No ) fllppmey if1<p < 2
My Fllsmey Spe Nolflnmey i3 < p < oo
for all € > 0.

When k = 1, it was shown by T. Tao in [10] that this conjecture is equivalent to the Kekeya
set conjecture, which is the following (we will not detail the theory about the Minkowsi dimension
here, for more information about it, see [3]).

Conjecture 3.19 (Kakeya set). Define a Kakeya set to be any subset £ C R™ which contains
a unit line segment in each direction. Then all Kakeya sets have Minkowski dimension n.

When n > 3, there are only partial results and when k& > 2 there is no known result. As
we can see, by considering only rectangles with no assumption on their orientation, the problem
stills open.
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4. The Hilbert Transform

We are going to study here a fundamental operator in analysis, the Hilbert transform. First we
introduce the notion of Fourier multipliers.

4.1. The multipliers

Definition 4.1. Given m € L>°(R"), we define the associated Fourier multiplier operator T},
by
Tn: | LR — L2(R")
f —  FYm-Ff).

By the Plancherel’s theorem, 75, is well defined on L?(R™) and he’s bounded :
1T Py = I Fllaginy < Il g 1 2 (1)
The Fourier multiplier of a function m € L°(R") is the only operator such that

(T f)" (&) = m(€) F(€)

for all € € R". Hence the operator T}, acts as a filter on the frequency of the function f. For
example, if m = X1 o), the associated Fourier multiplier will be a high-pass filter. If f € L2(R"),
then

TX[l,oo)f creR" — /1 f‘(g)eﬂﬂ'ézd{.

Since Ty, is a bounded operator on L?(R"), a legitimate question is to ask about its operator
norm || Ty, ||r2®n)—r2(rn)- In fact we know the exact value of this norm.

Lemma 4.2. If m € L®(R") then

[Tl mmy—12@e) = 17000 gy -
Proof. By the inequality (4.1), we know that

[T llLe®my—L2@mn) < ||mHLOO(ﬁn)'

We fix an € > 0 and let A be measurable subset of {¢& € R™ : |m(¢)| > HmHLoo(ﬁn) — ¢} whose
measure is finite and positive (in fact |A| isn’t alaways finised, for example if m is a constant

function). Let f be the function in L2(R™) such that f = x4. Then
HTmeL2(R") =|m- f”]}(ﬁn) > (HmHLoo(ﬁn) - E)HfHLz(ﬁn)-
So for all e > 0
1Tz —r2@e) 2 Ml @) — €
which concludes the proof. O

4.2. Definition
We would like to define the Hilbert transform of a function f € S(R) as the convolution of f
and the function ¢t — 1/t ie
1 _
Hf:$€R»—>/ Mdy.
TJR Y
The issue is that this object is not well defined, even on S(R), because of the singularity on 0.
A solution to switch the function t — 1/t by the tempered distribution vp(1/x), defined as
vp(l/z): | DOR) — R
¢ (vp(l/z),9) = 1im/
lz|=e

e—0

2,
W)y,
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Definition 4.3. Given a function f € S(R), we define its Hilbert transform Hf as

Hf(z) = ~vp(1/2) * f(z),
where z € R.

Let f e L?(R),1 < 2 < p and z € R. We would like to study the behavior when R — oo
of the integral

R ~ .
Suf =Tyt = | floeenag,

and determine when it converges to f(z), ie recovering a function f from its Fourier transform
f- We will see that there is a clear link between the operator Sg and the Hilbert transform. In
fact for all a < b,

Sk = % (mpHm_g — mrpHm_p) (4.2)

where mpg is a modulation operator defined by
mpf(z) = ¥ f ().

This last result gives to the Hilbert transform even more interest. Let see another equivalent
way to define the Hilbert transform.

Definition 4.4. For all ¢ > 0 we define the conjugate Poisson kernel Q); : R — R by

1 =z
Qt:x ER'—>Qt(fE) = ;m

Proposition 4.5. Given a function f € S(R) its Hilbert transform is also defined as

Hf = lim Qi+ f. (4.3)

Proof. 1t suffices to show that
1

lim @ = —vp(1/z)
™

t—0t+

in §(R). The functions {Q,;} are in L{ (R), so they define distributions. Let ¢ be a test
function in S(R). We need to show that

lim (@1, ¢) = ~ (vp(1/2), ).

t—0t+ T

We introduce some truncated versions of the inverse functions, for all € > 0 we define

1
Y. :x € R—> ;X{|I‘>E}
These functions define some tempered distributions. It’s clear that
li = 1
lim . = vp(1/z)
in §'(R). Then it suffices to prove that

I ) = 0.
ti%lJWQt P, )
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We have

i) - [ 280 [y,

R t? + a2 x

xp(x) / x 1
= d 2 Z)d
/|:c|<t t? + 22 v |x\>t(p(x) <t2+$2 )
_/ velwh) o, _/ o) g,
pl<1 L+y? wi>1 Y1+ 4?)

Then we apply the dominated convergence theorem

. Y 1
lim (7Q¢ — Yy, ) = (0 / ———=d —/ ——dy | =0
t—>0+< Qu = ¢) = 2(0) ( lyl <1 1+ y2 Y ly|>1 y(1+42) y)

4.3. Main results

Lemma 4.6. For all £ € ﬁ, in the sense of distributions we have

(;vp(l/x)>/\ (€) = —isgn(¢).

Proof. We saw that %vp(l /x) = lim;_,g+ Q¢. So by the continuity of the Fourier transform on
S'(R), we have for all £ € R

t—0+ t—0+

<7lrvp(1/:r)> (&) = (lim Q)"(€) = lim Qu(&).

By using the inverse Fourier transform we can easily show that @(g) = —isgn(f)e*%t"f‘, the
lemma follows by taking the limit as ¢t — 0. O

This lemma gives us an expression of the Fourier transform of the Hilbert transform of a
Schwartz function. With the following expression, we can easily obtain the identiy (4.2).

Proposition 4.7. Let f be a function in S(R). The Fourier tranform of Hf s given for all
£EeR by

(HF)(€) = —isgn(€) f(€).

This expression lets us define the Hilbert transform on L2(R). Futhermore we have the
following corollary.

Corollary 4.8. Let f be a function in L?(R). Then we have the following results.
(i) Hf € L2(R) and
Hfl2m) = [1fllL2®)-

(i)
H(Hf) = —f.

/RHf-gz—/Rf'Hg

Proof. (i) We apply the Plancherel’s theorem and the proposition 4.7,

(i13) If g € L2(R) then

VLS gy = 1B lay = 172y = 1 leqe.
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(ii) We fixed a real ¢ € R.

(H(HF))(€) = —isgn(&)(TTF)(€) = (—isgn(€))* f(€) = —f(£)-
Again, we conclude with the Plancherel’s theorem.

(iii)

[ wrg= [ = [ —iss@f©a©0k = [ f@)@ar =~ [ g

R

O

Theorem 4.9. Let 1 < p < co. The Hilbert transform H can be extended on LP(R). Further-
more :

(1) (Riesz) H is strong (p,p) :
[Hf ey S 1 lleew)

for all f € LP(R).
(ii) (Kolmogorov) H is weak (1,1)

e e R Hp) > ) 5 1R

for all f € LYR), A > 0.

We will prove the theorem 4.9 in the next section, as a special case to another theorem.
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5. Singular Integrals and the Calderén-Zygmund Theorem

We are going to study a more general theory which implies the results about the Hilbert transform
: the study of singular integrals and in particular the Calderon Zygmund theorem.
5.1. Introduction and application to Hilbert transform
Given a tempered distribution K € S'(R™), we will consider the associated convolution operator
Kxf (5.1)

for f € S(R™).
Theorem 5.1 (Calderon-Zygmund). Let K be a tempered distribution. Assume that :

(1) K coincides with a locally integrable function on R™\{0};

(13) there exists a constant A such that for all £ € R"

IK(€)] < A, (5.2)

(#i7) (Hormander condition) there exists a constant B such that

sup / |K(x —y) — K(x)|de < B. (5.3)
yeR™ J|z|>2y

Then the convolution operator, defined initially on S(R™), is weak (1,1) and strong (p,p) for
1 <p<oo.

An continuous linear map S(R"™) — C°(R™) of the form f — K f who respects these three
condtions is called a Calderon-Zygmund operator. The condition (5.3) admits a stronger
version, but often easier to apply.

Proposition 5.2. If K € S'(R") coincides on R™\{0}) with a function K € C*(R™\{0} and
assume

VK (z)| < |77, Yz e RM\{0}. (5.4)
Then the condition (5.3) holds.

Proof. The proof is an application of the mean value theorem, see the details on [5]. O

Before presenting the useful tools to prove the theorem (especially the Calderén-Zygmund
decomposition), let us see how it can be applied to prove the theorem 4.9 on the Hilbert transform.
Let’s check the three conditions

(i) The kernel considered here is the principal value vp(1l/z), which is well a tempered
distribution. This principal value coincides with the function t — 1/7t on R*, and it’s a
function in LL (R).

loc

(ii) By the lemma 4.6 we know that for all £ € R

‘<71TVP(1/J;))A(£)' = |—isgn(é)| < 1,

so the condition (5.2) holds.
(#i7) By the proposition 5.2, the assumption (5.3) is trivially verified.

Then we can conclude that the Hilbert transform is weak (1,1) and strong (p,p) for 1 < p < oo,
the theorem 4.9 is proved. We will see another application of this theorem in the next section.
Let’s move to the proof.
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5.2. The Calderén—Zygmund decomposition

Given an integrable function f € L'(R™), the main idea of the proof is to break f into two parts,
a good part g and a bad part b, where :

o f=g+0b
e ¢ is essentially bounded;
e b is unbounded but has a small support and has a zero mean.

Let us demonstrate two lemmas which explain the interest of this decomposition. The first
one is for the good part g and the second one is for the bad part b.

Lemma 5.3. Suppose K € S'(R™) satisfies that K coincides with Lw(ﬁ")—function. Then for
all f € SR, K * f € L2(R") and

1 5 Pl < K pe i 1 2
Proof. By the Plancherel’s theorem :
1 * ey = 1K * £z g
< R e i | Pl i
= 1K e g 1 2 e

O

Lemma 5.4. Let K be a kernel of a Calderdn-Zygmund operator and let Q be a compact cube.
Suppose f € LY(R™) has mean zero and is such that suppf C Q.

K * flloimmos S Il mny
where Q* is the cube concentric to Q but with 2/n times the side-length.

Proof. Assume that f is not zero almost everywhere, otherwise the result is trivial. Hence we
can assume that |Q| > 0. We fix x € R"\Q*. Then for all y € suppf, |z —y| > |Q*| > 0 so

K x f(z) = W}«x—wﬂw@

because a kernel of a Calderén-Zygmund operator coincides with a locally integrable function on
R™\{0}. Let ¢ be the center of the cube Q. Since f € L'(R") has mean zero, we can write

K@) = [ (Klz=y)- Klz - ). (5.5)
Note that if y € Q we have

w—cl > Val@Q) > 2ly — el (5.6)

In fact the minimum distance between x and ¢ is v/nl(Q), and the maximal distance between y
and c is, by the theorem of Pythagore, 4[(@) (see the figure below).
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2v/nl(Q)

€mmmmmm e m
<
[ ]

Q*
Figure 3: @ and Q*

Let’s conclude the proof. By the Fubini-Tonelli’s theorem, using (5.5) we have

1K flumngr = [ | [ (@ =)~ Kla = )w)ay| da

R™M\Q*
< / / K (- y) — Kz — o)||f()|dydz
Rn\Q* n

:/ /|K(“’”_y)‘K($—C)If(y)ldyd:c.
RMN\Q* JQ

By using again the Fubini-Tonelli’s theorem we obtain

I = e < [ ( Jog =) —K(x—c)dx> 7 )ldy.

By (5.6), we know that R"\Q* C {x e R" : |z — ¢| > 2|y — ¢|} if y € Q. So it comes
1K+ e < [ [ Kz —y) — K(x - 0ldz | [£()ldy
Q \Jlz—c| >22]y—¢|

- / ( / |K<<x—c>—(y—c))—K(x—c)dx> F)ldy
Q \/lz—c|>2|y—|

_ / ( / ,K((x—y»—K(xndx) 1£(9)ldy
Q \Vlz|>2ly|

and by the assumption (5.3) in the definition of Calderén-Zygmund operator we obtain the
desired result. O

Let K be a kernel of a Calderén-Zygmund operator. Assume that a function f € L'(R") is
given and we are able to break it as f = g + b, as in the introduction. Since g is bounded, the
lemma 5.3 can gives us a good bound for K * g. Heuristically, for the bad part we have

[ K * bl [y = ([ # bl g+ + 1K * bl rm\ge) S QT + 1 * fllimm\g#)

and then by the lemma 5.4 and the fact that @ is small, this bounded should be small. In fact
it’s not that simple, the support of b will be contained in an union of cubes, but it’s the main
idea. Then some interpolation arguments will conclude the proof in LP(R™) for 1 < p < cc.
Let’s move on the proof of the decomposition. The proof is based on a fundamental lemma :
the Calderén-Zygmund covering lemma, which gives us a decomposition of R™ adapted to an
integrable function.

Lemma 5.5 (Calderén-Zygmund covering lemma). Let f € LY(R"™) and A > 0. Then there
exists a collection of disjoint dyadic cubes Q@ C D™ such that :
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(4) for almost every x & Ugeo @, |f(2)] < A;
(i)
Ual < Hf”L/\l(R");
QeQ
(7i1) for all Q € Q
A< < 27
1

Proof. We are going the weak-type (1,1) of the dyadic maximal function, theorem 2.14, and its
corollary (proposition 3.4). As in the proof of theorem 2.14, we form for k € Z the sets

Qp:={zeR": Eyf(x) > Xand E;f(x) < Aif j > k}.

and decompose each into disjoint dyadic cubes contained in Dj. All of these cubes form the
family Q.

(i) Let ¢ Ugeo®. Then for every k € Z, x ¢ Q, so Ef(xz) < A. Then by the proposition
3.4, we obtain the results by taking the limit as k — oo.

(7i) The second point is just the weak (1, 1) inequality of the theorem 2.14.

(7i1) Let Q € Q. According to the definition of the sets Q, the average of f over the cubes @

is greater than A :
][ f>A
Q

Let Q* be the cube with the same center as @ but such that [(Q*) = 2{(Q). So by the
definition of the sets {2 the average of f over Q* is at most A\. Hence

Q| n
< < 2N
]égf Q[ Jg- d

We can finally prove the desired decomposition result.

Corollary 5.6 (Calderén-Zygmund decomposition). Let f € LY(R"™) and A > 0. Then there
exists a collection Q@ C D" of disjoint dyadic cubes and some functions g,bg € LY(R") (for
Q € Q) such that

f=g+0b, for b:= ZbQ.
QReQ

where ||gllirmny < | fllLimny and for all Q € Q, [[bgllLyrry < 2[fllLi(q). Furthermore :

(i) for almost every x € R",
lg(x)| < 2°X;

(13) for all Q€ Q
supp(bg) C Q et / bg = 0;
Q
(i41)

1
L“J Q| < :X|Lf”IE(I{”)'
Qe
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Proof. Let Q be the collection of cubes given by the lemma 5.5. Let’s define the bad functions

for all Q € Q:
bqg = (f-éf)XQ,

g::fbeQ.

QeQ

and let the good function be

These first results are clear :
e supp(bg) C Q;
o [[bgllLimny < 2(fllLimn)-

On the one hand, for all x ¢ Ugeo@, g(x) = f(z) < A < 2"A. On the other hand, if x € Q for
some @ € O,

mu>=Mﬁ]<éu1<wx

So for almost every z € R", |g(x)| < 2"\, we got the first point. We just have to prove that

l9llimny < [ fll@ny-
ol = | a+ [ el
R™"\Ugeo @ Ugeo @

and since the cubes are disjoint
ol < | 71+ [ 1d
Rn\UQeQQ QeQ Q

and [, 19| < [, [f], which concludes the proof. O

5.3. Proof

We can now prove the Calderén-Zygmund theorem. Let K be a tempered distribution as in the
theorem 5.1. We note T the convolution operator associated to the kernel K :

Tf .= K x f,

for all f € S(R™).

5.3.1. Step 1 : Reduction of the problem.

In fact it suffices to show that T is weak (1,1). We use interpolation and duality. Assume that
T is weak (1,1). By the lemma 5.3, we know that

1T flle @y S K oo oy 1 L2y

holds whenever f € S(R"). Since thee space S(R") is dense in L?(R™), this result can be
extended to all f € L2(R"). So T is strong (p,p). By using the theorem 2.9, this result of
interpolation asserts that T is strong (p,p) for 1 < p < 2. Now let 2 < p < oo, and denote p’ its
conjugate index. For all f,g € S(R"),

(Tf,g)={f,T"g)
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where (-, -) denote the inner product in L2(R"), and T* the adjoint operator of T'. It’s clear that
the adjoint operator T* has kernel K* = K(—-) which also satisfies (5.2) and (5.3), so T* is also
a Calder6n-Zygmund operator. Since 1 < p’ < 2, T* is srong (p/,p’). Let f € LP(R™). By using
the extremal equality of Holder’s inequality we have

1T f e mny = Sup{‘/m Tf- g’ 19 € L7 (R™), g/l gn) < 1}
= sup {|(/,T79)| : g € L (R"), gl ey < 1}
< oy 50 LIl oy = 9 € L7 (R, gl oy < 1}

and because T* is strong (p/, p’)

1T flle ey S Iflluere)-

5.3.2. Step 2 : Proof of the weak (1,1) bound.

Now we have to prove the weak-type (1,1) of T. Let f € L'(R") and A > 0. We use the
Calderon-Zygmund decomposition on the function f = g + b, where g, b are the good and bad
parts of f. We write

e e R : |Tf(z)| > A} < [{z € R™ : [Tg(x)| > \/2}| + |{z € R™ : |Tb(z)| > N/2}.  (5.7)

Since ¢ is bounded almost everywhere, the first term is easly bounded with the Markov’s in-
equality :

{z e R" : [Tg(x)] > A/2}| = [{z € R" : [Tg(x)]” > X*/4}]
4
< F”TQHLQ(R")-
Then by the lemma 5.3 and the (i) of the corollary 5.6 we obtain

/1 )
—
For the second term we have to use the collection of cubes Q@ C D™ given by the decomposition
of Calderén-Zygmund. We have

{z e R":[Tg(x)| > A2} S (5.8)

{z e R™: [Th(z)| > N/2}| < || @ |+ |{z ¢ | Q" ITb(x)| > A/2
QeQ QeQ

By the third point of the corollary 5.6, we have

U HfHLl ISl mny
QeQ

where the constant depends on n. And by the Markov’s inequality

2
{z e R™\ | Q:ITb(x)] > A/2}| < bl R\ Ugeo@)-
QeQ

By using the lemma 5.4, the corollary 5.6 and since the cubes are disjoint

ITb] rvoco) = I D Thollmmvoco) S D Ibolliig) S If L ma)-

QeQ QReQ
So
o < Ifllr@n
{z € R |Th(a)| > A2} 5~ 5B (5.9)

By the equalities (5.7), (5.8) and (5.9) we finally obtain the weak (1,1) bound.
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6. The Hormander—Mikhlin Multiplier Theorem

We are going to present a theorem with many application, especially in PDEs. Its a direct
application of the Calderén-Zygmund theory.

6.1. Littlewood-Paley decomposition

Here we are going to decompose a function f into a sum of functions with localized frequencies.
Fix n € C*(R") satisfying

supp(n) C [-2,2] and n(r)=1if |r] < 1.

We define 3, 8; € C°(R), for j € Z by

6:| R — R
ro— n(r) —n(2r)
and
/8] = ﬂ(27] )

Hence we have
supp(f) C [-2,—-1/2]U[1/2,2] and supp(p;) C [—2j+1, —2j_1] U [2j_1,2j+1]

for all j € Z, and for all » € R\{0}

S B(r) = 1. (6.1)

JEZ

We identify the functions 5; on R and the radial functions B;i(|-1]) on R". Then we consider

the Littlewood-Paley functions §; € C*° (f{”) So each function §; is supported in the dyadic
annulus

Aji={¢eR": 271 < |¢] < PHY

and the collection of all such functions forms a smooth partition of unity of R" adapted to the
covering {A;};jcz. This partition of unity is called the smooth Littlewood—-Paley decompo-
sition.

6.2. The Héormander—Mikhlin multiplier theorem

This theorem is an application of the Littlewood-Paley decomposition as well as an application
of the Calderén-Zygmund theory. We defined the notion of Fourier multipliers earlier, see the
definition 4.1.

Theorem 6.1 (Hormander-Mikhlin multipliers). Suppose m € L>®°(R™) is smooth away from
zero and 1s such that

|08m(€)] Sa €71

for all ¢ € R™\{0} and for all multi-index o € N™. Then the Fourier multiplier operator Ty,
extends to a bounded operator on LP(R™), for 1 < p < occ.

By abuse of language, such a function is called a Hormander-Mikhlin multipliers.

Examples 6.2. (i) The Littlewood-Paley functions j; for j € Z are Hérmander-Mikhlin mul-
tipliers.
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(i) For N > 2et 1 < j < N, we consider the multiplier
8,

€]
The operators R; := T),, are called the Riesz transform. It’s clear that they are some

Hérmander-Mikhlin multipliers. So by the theorem 6.1, R; extends to all LP(R"), 1 < p <
oo, and for all f € LP(R")

m;(€) = V¢ e R\{0}.

IR flle@ny S 1 llLe@e)-
Furthermore, for all 1 < j,k < n and for all f € S(R™) we have

9% . [ =—RjRpAf (6.2)

Tj,Tk
(it suffices to determinate the Fourier transform of both term).

The Calderon-Zygmund has a large range of applications to PDE, the equality (6.2) gives us
an example.

Corollary 6.3. Let 1 <p<oo and 1 < j,k < n. Then for all f € S(R")

107, 2 flLr@ny Spn 1A ILr @)
Proof. Tt suffices to use the equality (6.2) and the theorem 6.1. O

6.3. Proof

First, let’s explain the main ideas of the proof in a heuristic way. Let m be a Hérmander-
Mikhlin multipliers, and K := 1 the kernel associated to the multiplier T,,. We know that

Tof =K« f, forall feSR). (6.3)

We want to apply the Calderén-Zygmund on K. Agsume we know that K coincides with a
function away from the origin. Then if m € L'(R"), K is a function defined by

K:zeR"+— [ m(&)e*™4de.
R’ﬂ
However, we don’t know if m is integrable. Then we use the smooth Littlwood-Paley decompo-
sition and we decompose m as

m = ij, where m; := mf;. (6.4)
JEZ

For all j € Z, supp(m;) C Aj so m; € Ll(f{”). Now we can work on each pieces K; of K, and
at the end of the day we get back K via a limiting procedure. Let’s see the details.

Proof. We assumed that m € Loo(ﬁ”), since K = m, the condition (5.2) holds. We decompose
m as in (6.4),

Tmf:ZTm]fa vfeLQ(Rn)a
JEZ
the convergence holds in L%(R™). Let’s check that point. Let f € L2(R") and N € N. Then by
the Plancherel’s theorem

N N
| Ton f — Z T, fllzmmy = I | f — Z Bif | M2 g

j=—N j=—N

N
< HmHLoo(ﬁn)Hf_ Z ij“]ﬂ(ﬁn)'
j=—N
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Then we use the dominated convergence theorem and the equality (6.1) to conclude. Since m and
the 8; are Hormander-Mikhlin multipliers, the product m; is also Hormander-Mikhlin multipliers

(the details are left to the reader), so for all £ € R™\{0} and all o € N" 8§‘m]~(§)‘ <o ||l

Furthermore supp(m;) C A;, so by integrating we have

1085 ()1 ) S / €|~ lelag
Sa 2092774 A
and we finally obtain
198 ()l @y S 27927 (6.5)

Taking o = 0, we see m; € Ll(ﬁ”), and so we can define K; the kernel of the multiplier T}, by

Kj(z) = m;(€)e* ™™ d¢, Va € R™,

R”

for x € R™.

Now we have to realise the kernel K is the distributional limit of the series ) jez I, and to
show this limits agrees with a function away from zero. For z € R™\{0}, we define the vector
fields

1‘ 85 Z xkagk

In view of the differential identity

i <.’B, af> 62i7r:c~£ — 621'71'&?{’
2w |z|?

by repeating integration-by-parts, and since supp(m;) is compact, we obtain for all N € N,

-1 N 2ima- N
Kj(z) = <2m|x|2> /Ane £<1’7a£> m;(§)dg. (6.6)
Combining the equality (6.6) with the inequaliy (6.5), we obtain for all N € N,

|Kj(2)| Sv 2771+ 2[a]) . (6.7)

So the serie ) ;.5 K;j converges pointwise and absolutely on R™\{0} to a function K. By taking
N =n+1in (6.7), we have

Z|Kj(3«”)|§ Z AR Z 2—j’x‘—(n+1)'

JEZ JEZ JEZ
27|z <1 27|z|>1

Then by evaluating these geometric series, we see that K satisfies | K ()| < |z|~". The pointwise
limit (6.4) also holds in the sense of distributions. Then

K:ZK]»

JEZ

where the convergence is in the sense of distributions. Then K agrees with K away from zero,
so we drop the tilde notation.
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We finally have to show that K satisfies the Hérmander condition (5.3). We will show that
K satisfies the Hérmander stronger condition, see the proposition 5.2. We have

O, Kj(x) = 2im /ﬁn &m; (€)X de.
As above we can show that for all N € N
0,1 (2)] Sy 27D (L + 2|~
and for all z € R"\{0}, by taking N =n + 2,
VK (2)] < |27

Then K satisfies the condition (5.3), so by applying the theorem 5.1 we conclude the proof. [
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