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1. Introduction and Notation

In this paper we �rst extend the de�nition of the Fourier transform, and then state some im-
portant and fundamental results, especially about some convergence results. Unless otherwise
stated, we will use the Lebesgue measure in Rn.

1.1. Extension of the Fourier transform

For a function f ∈ L1(Rn) we de�ne its Fourier transform by

f̂(ξ) :=

�
Rn

f(x)e−2iπx·ξdx

where ξ ∈ R̂n. The map

F : L1(Rn) 7−→ L∞(R̂n)

f −→ f̂

is then a bounded linear operator. All the basic results about the Fourier transform can be found
in [1]. The notation R̂ is just another notation for R, but it's useful to show that we are working
the frequency space. However let's recall some important results.

Theorem 1.1 (Plancherel). F can be extended as a bijective operator L2(Rn) −→ L2(R̂n).
Furthermore if f ∈ L2(Rn), then

‖f‖L2(Rn) = ‖f̂‖
L2(R̂n)

.

We still denote F this extended operator. Since F is well de�ned on L1(Rn) and on L2(Rn),
we can de�ne it by interpolation on Lp(Rn) for 1 < p < 2.

Theorem 1.2 (Riesz-Thorin Interpolation). Let 1 6 p0, p1, q0, q1 6 ∞, and for 0 < θ < 1
de�ne p and q by

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

If T is a linear operator from Lp0(Rn) + Lp1(Rn) to Lq0(Rn) + Lq1(Rn) such that

‖Tf‖Lq0 (Rn) 6 C0‖f‖Lp0 (Rn), f ∈ Lp0(Rn)

and

‖Tf‖Lq1 (Rn) 6 C1‖f‖Lp1 (Rn), f ∈ Lp1(Rn)

Where C0, C1 are some real constant. Then T is de�ned on Lp(Rn) and

‖Tf‖Lq(Rn) 6 C1−θ
0 Cθ1‖f‖Lp0 (Rn), f ∈ Lp(Rn).

The proof can be found in [9]. We apply this theorem with the Fourier transform F and with
the inequalities

‖f̂‖
L∞(R̂n)

6 ‖f‖L1(Rn) and ‖f̂‖
L2(R̂n)

= ‖f‖L2(Rn).

Corollary 1.3 (Hausdor�-Young inequality). Let 1 6 p 6 2. If f ∈ Lp(Rn) then f̂ ∈ Lp
′
(R̂n)

and

‖f̂‖
Lp′ (R̂n)

6 ‖f‖Lp(Rn).
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1.2. Convergence result

One of the main problem in harmonic analysis is to make sense of the inversion formula

f(x) =

�
R̂n

f̂(ξ)e2iπx·ξdξ (1.1)

for x ∈ Rn. If f ∈ L1(Rn) and f̂ ∈ L1(R̂n), then (1.1) holds for almost every x ∈ Rn. But we
saw that if f ∈ Lp(Rn) for 1 < p < 2, then f̂ ∈ Lp

′
(R̂n) and so there is nothing to ensure the

integrability of f̂ . However the function f̂ is at least locally integrable. So we can de�ne the
partial Fourier integrals,

SRf : x ∈ Rn 7−→ SRf(x) :=

�
[−R,R]n

f̂(ξ)e2iπx·ξdξ

for f ∈ Lp(Rn), 1 6 p 6 2, and R > 0. So one of the main problem in harmonic analysis is
to study the convergence of SRf as R→∞. We have two results of convergence for the Fourier
integrals.

Theorem 1.4 (M. Riesz). Let 1 < p 6 2. If f ∈ Lp(Rn) then

‖SRf − f‖Lp(Rn) −−−−→
R→∞

0.

Theorem 1.5 (Carleson-Hunt). Let 1 < p 6 2. If f ∈ Lp(Rn), then

SRf −−−−→
R→∞

f, almost everywhere.

Proving these results are quite complicated, and we are not going to prove it here. However,
we will introduce in this paper some basic tools and some important theories in harmonic analysis.
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2. The Hardy-Littlewood Maximal Function

We use in this paper the notation of the average −
�
, ie

−
�
A
fdµ :=

1

µ(A)

�
A
fdµ.

Br designates the ball centered at the origin and with a radius r. We note B(x, r) for the ball
of radius r centered on x.

2.1. Introduction and de�nition

De�nition 2.1. For f ∈ L1
loc(R

n), we de�ne the average operator associated to f as

Arf(x) := −
�
Br

f(x− y)dy,

where r > 0 and x ∈ Rn.

We can interpret the average operator as a convolution, for r > 0 and f ∈ L1
loc(R

n) :

Arf =
1

|Br|
χBr ∗ f.

A simple consequence of Young's inequality shows that for all f ∈ Lp(Rn), if 1 6 p 6 ∞,

‖Arf‖Lp(Rn) 6 ‖f‖Lp(Rn). (2.1)

De�nition 2.2. For f ∈ L1
loc(R

n), we de�ne the associated Hardy-Littlwood maximal func-
tion as

MHLf(x) := sup
r>0

Ar|f |(x),

where x ∈ Rn.

A priori, this quantity could be equal to ∞. Sometimes it could be useful to consider this
maximal function on some cubes centered on x ∈ Rn, and not necessarily on balls. That's why
we introduce the equivalent function

M ′HLf(x) := sup
r>0
−
�
Qr

|f(x− y)|dy

where Qr := [−r, r]n. We can assume that these functions are equivalent in a certain way because
there are some constants cn, Cn such that

cnM
′
HLf(x) 6 MHLf(x) 6 CnM

′
HLf(x), (2.2)

for all x ∈ Rn. In fact, any cubes contain a smaller ball inversely.

Example 2.3. Let f := χB, where B denotes the unit ball centered at the origin in Rn. The
notation . means 6 C where C is a constant. In this case

MHLf(x) >
|B ∩B(x, 2|x|)|
|B(x, 2|x|)|

& (1 + |x|)−n

for all r > 0 and x ∈ Rn.
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This example show that, unlike the average operator Ar (see (2.1)), the Hardy-Littlewood
maximal function is not bounded in L1(Rn). Indeed

�
Rn

(1 + |x|)−ndx =∞.

However, we will prove that MHL function is bounded on Lp(Rn) for 1 < p 6 ∞, and also
admits some "weak-bound" on L1(Rn). The following result shows the important of the Hardy-
Littlewood maximal function, especially to study some approximations of the identity.

Proposition 2.4. Let ϕ : R −→ R be a function which is positive, radial, decreasing, and
integrable. We note for t > 0

ϕt = t−1ϕ(t−1·).

Then
sup
t>0
|ϕt ∗ f(x)| 6 ‖ϕ‖L1(R)MHLf(x)

for all x ∈ R and for all f ∈ L1
loc(R).

Like we said, this theorem can be very interesting if {ϕt}t is an approximation of the identity.
So it would be useful to obtain some bounds for MHL.

2.2. The Marcinkiewicz interpolation theorem

De�nition 2.5. Let (X,µ), (Y, ν) be two measure spaces and T an operator from Lp(X,µ) into
the space of measurable complex-valued functions Y → C, with 1 6 p 6 ∞. We say that

� T is weak (p, q), for q <∞, if

ν({|Tf | > λ}) .
(‖f‖Lp(X,µ)

λ

)q
for all λ > 0 and for all f ∈ Lp(X,µ).

� T is weak (p,∞) if T is a bounded operator from Lp(X,µ) to L∞(Y, ν).

� T is strong (p, q) if T is a bounded operator from Lp(X,µ) to Lq(Y, ν), ie

‖Tf‖Lq(Y,ν) . ‖f‖Lp(X,µ)

for all f ∈ Lp(X,µ).

Proposition 2.6. A strong (p, q) operator is weak (p, q).

Proof. Let's use the notation of the previous de�nition. Let f ∈ Lp(X, ν) et λ > 0. We assume
that q <∞ (otherwise the result is obvious). Then

ν({|Tf | > λ}) =

�
{|Tf |>λ}

dν 6
�
{|Tf |>λ}

∣∣∣∣Tf(y)

λ

∣∣∣∣q dν(y) 6
‖Tf‖qLq(Rn)

λq
.

Since T is strong (p, q), we have

ν({|Tf | > λ}) .
(‖f‖Lp(Rn)

λ

)q
,

which concludes the proof.
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De�nition 2.7. An operator T from a vector space of measurable functions F into another
space of measurable functions is said to be sublinear if

|T (f0 + f1)(·)| 6 |Tf0(·)|+ |Tf1(·)|, ∀ f0, f1 ∈ F ,

|T (λf)(·)| = |λ||Tf |, ∀ f ∈ F , ∀λ ∈ C.

Example 2.8. The Hardy-Littlwood maximal function is a sublinear operator.

Theorem 2.9 (Marcinkiewicz Interpolation). Let (X,µ), (Y, ν) be two measure spaces and let
T be a sublinear operator from Lp0(X,µ) + Lp1(X,µ), with 1 6 p0 < p1 6 ∞. We assume that
T is weak (p0, p0) and weak (p1, p1). Then T is strong (p, p) for all p0 < p < p1.

We already mentioned an interpolation theorem with the theorem of Riesz-Thorin for the
linear operator. We introduce a new one, which applies to the sublinear operator. So with this
theorem, it can be enough to prove some weak bounds on the operators, and it is often easier,
hence the interest of this theorem. The following lemma will help us to prove it.

Lemma 2.10. Let (X,µ) be a measured space and f ∈ Lp(X,µ). Then

‖f‖pLp(X,µ) = p

� ∞
0

λp−1µ({|f | > λ})dλ.

Proof of the lemma. We notice that for all x ∈ X,

|f(x)|p = p

� |f(x)|

0
λp−1dλ.

Then

‖f‖pLp(Rn) =

�
X

� |f(x)|

0
pλp−1dλdµ(x),

by Fubini-Tonelli's theorem we can switch the integrals

‖f‖pLp(Rn) =

� ∞
0

�
{x∈X:|f(x)|>λ}

pλp−1dλdµ(x)

= p

� ∞
0

λp−1µ({|f | > λ})dλ.

Let's move on the proof of Marcinkiewicz's theorem.

Proof of the theorem. Let f ∈ Lp(X,µ), for p0 < p < p1, and let λ > 0. We give us a constant
c, which the value will be �xed later. We decompose f as f0 + f1, where

f0 = fχ{|f |>cλ}

and
f1 = fχ{|f |6 cλ},

(we decompose f as a sum of her large values and her small values). Since p0 < p, we can write�
X
|f0|p0dµ =

�
X
|f |p|f |p0−pχ{|f |>cλ}dµ 6 (cλ)p−p0‖f‖pLp(X,µ) <∞.

By an analogous proof, we can conclude that f0 ∈ Lp0(X,µ) and f1 ∈ Lp1(X,µ). Since T is a
sublinear operator from Lp0(X,µ) + Lp1(X,µ), we have for all x ∈ X

|Tf(x)| 6 |Tf0(x)|+ |Tf1(x)|.

Comparating |Tf0(x)| and |Tf1(x)|, we obtain

µ({|Tf | > λ}) 6 µ({|Tf0| > λ/2}) + µ({|Tf1| > λ/2}).

We consider two cases.
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� If p1 =∞. By the weak (p0, p0) and (p1, p1) inequalities, there exist two constants A0, A1

such that

µ({|Tf0| > λ/2}) 6

(
2A0

λ
‖f0‖Lp0 (X,µ)

)p0
(2.3)

and
‖Tf1‖L∞(X,µ) 6 A1‖f1‖L∞(X,µ).

So by choosing c = 1/2A1, we have

µ({|Tf1| > λ/2}) 6 µ({A1|f1| > λ/2}) = 0.

Hence, by using the lemma 2.10 and the weak inequality (2.3),

‖Tf‖pLp(X,µ) 6 p

� ∞
0

λp−1µ({|Tf0| > λ/2})dλ

6 p(2A0)p0
� ∞

0
λp−p0−1

�
{|f |>cλ}

|f |p0dµdλ.

Fubini-Tonelli's theorem allows us to conclude,

‖Tf‖pLp(X,µ) 6 p(2A0)p0
�
X
|f(x)|p0

� |f(x)|/c

0
λp−p0−1dλdµ(x)

=
p2p

p− p0
Ap00 A

p−p0
1 ‖f‖pLp(X,µ).

� If p1 <∞. This time we have

µ({|Tfi| > λ/2}) 6

(
2Ai
λ
‖fi‖Lpi (X,µ)

)pi
for i ∈ {0, 1}. From this we get, after a similar calculation,

‖Tf‖pLp(X,µ) 6 p

(
(2A0)p0

p− p0
cp0−p +

(2A1)p1

p1 − p
cp1−p

)
‖f‖Lp(X,µ).

In both cases, we can assert that T is strong (p, p).
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2.3. Dyadic maximal operator

In harmonic analysis, it is often easier to work on discrete objects instead of continous object.
This one of the reason for us to introduce a decomposition of Rn into some cubes of di�erent
length : the dyadic cubes.

2.3.1. Dyadic cubes

De�nition 2.11. A dyadic cube in Rn is a subset of the form

Q =
n∏
i=1

[kj2
r, (kj + 1)2r[

where h1, . . . , kn ∈ Z and r ∈ Z. For a such cube Q, we de�ne his length by l(Q) := 2r. We
denote by Dn the collection of dyadic cubes in Rn, and

Dnr := {Q ∈ Dn : l(Q) = 2r} .

From the de�nition we can easily deduce the following propositions.

Proposition 2.12. (i) For all x ∈ Rn and for all r ∈ Z, there exists a unique cube Q ∈ Dnr
such that x ∈ Q.

(ii) Two dyadic cubes are either disjoint or one contains the other.

(iii) If r, s ∈ Z with r < s, then each cube Q ∈ Dnr is contained in a unique cube in Dns .

Let's represent some of these cubes in the portion of plane [−1, 1]× [−1, 1] of R2. For a given
x, it's clear that for each �xed length, x lies in a unique dyadic cube.

l(Q) = 2

•
x

l(Q) = 1

•
x

l(Q) = 1/2

•
x

Figure 1: [−1, 1]2 ∩ D2
r , r ∈ {−1, 0, 1}.

2.3.2. Dyadic maximal function

De�nition 2.13. For f ∈ L1
loc(R

n) and k ∈ Z, we note

Ekf(x) :=
∑
Q∈Dn

k

(
−
�
Q
f

)
1Q(x)

où x ∈ Rn. We de�ne the dyadic maximal function associated to f as

Mdf(x) := sup
k∈Z

Ek|f |(x).
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The operators {Ek : k ∈ Z} satisfy the fundamental identity : if Ω is the union of cubes in
Dnk then

�
Ω
Ekf =

�
Ω
f (2.4)

for all f ∈ L1
loc(R

n). Hence, {Ek : k ∈ Z} can be seen as a discrete approximation of the

identity.

Theorem 2.14. The dyadic maximal function is weak (1, 1).

Proof. Let f ∈ L1(Rn). Because of the de�nition of Md, we may assume that f is non-negative.
For k ∈ Z we de�ne the set Ωk as

Ωk := {x ∈ Rn : Ekf(x) > λ and Ejf(x) 6 λ if j > k}.

Then we can see that

{x ∈ Rn : Mdf(x) > λ} =
⊔
k∈Z

Ωk.

In fact, if x ∈ Rn is such that Mdf(x) > λ, then the sets {k ∈ Z : Ekf(x) > λ} are not
empty. Since Ekf(x) → 0 as k → ∞ (because f ∈ L1(Rn)), we are allowed to choose k as the
maximum of these sets. The other implication is obvious. In summary, x ∈ Ωk if Ekf(x) is the
last expectation of f which is greater than λ. By writting each of the disjoint sets Ωk as the
union of cubes in Dnk , we have

|{x ∈ Rn : Mdf(x) > λ}| =
∑
k∈Z
|Ωk|

<
∑
k∈Z

�
Ωk

Ekf

λ
.

Then by using the identity (2.4) :

|{x ∈ Rn : Mdf(x) > λ}| < 1

λ

∑
k∈Z

�
Ωk

f

6
1

λ
‖f‖L1(Rn).

The last inequality concludes the proof : Md is weak (1, 1).

It's quite obvious that Md is strong (∞,∞). Then by the Marcinkiewicz interpolation theo-
rem we immedialty have the following corollary.

Corollary 2.15. Let 1 < p < ∞. The dyadic maximal function is strong (p, p), ie for all
f ∈ Lp(Rn)

‖Mdf‖Lp(Rn) . ‖f‖Lp(Rn).

2.4. Hardy-Littlewood maximal theorem

Theorem 2.16 (Hardy-Littlewood maximal theorem). (i) Let 1 < p 6 ∞. The Hardy-
Littlewood maximal function MHL is strong (p, p), ie for all f ∈ Lp(Rn)

‖MHL‖Lp(Rn) . ‖f‖Lp(Rn).

(ii) The Hardy-Littlewood maximal function MHL is weak (1, 1).
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The theorem is clear for p =∞, and we already in the seen example 2.3 that the result isn't
true for p = 1. The Hardy-Littlewood maximal function is weak (∞,∞), so by the Marcinkiewicz
interpolation theorem it su�ces to prove the second part of the theorem.

Proof. Let f be an integrable function and λ > 0. We may assume that f is a non-negative
function (because M′HL|f | = M ′HLf). We are going to prove that

|{x ∈ Rn : M ′HLf(x) > 4nλ}| 6 2n|{x ∈ Rn : Mdf(x) > λ}|. (2.5)

We recall that M ′HL is the maximal function de�ned on cubes. We saw that these two maximal
functions are kind of equivalent (see inequalities (2.2)). By the theorem 2.14, we know that

|{x ∈ Rn : Mdf(x) > λ}| .
‖f‖L1(Rn)

λ
. (2.6)

Let's prove the inequality (2.5). As before, we are able to �nd some cubes {Qi}i such that

{x ∈ Rn : Mdf(x) > λ} =
⋃
i

Qi

(see the proof of the theorem 2.14). Let Q∗i be the cube with the same center as Qi and whose
sides are twice as long : l(Q∗i ) = 2l(Qi). We �x an x /∈ ∪iQ∗i , and we denote by Q a cube
centered at x. Let k ∈ Z be the integer such that 2k−1 < l(Q) < 2k. Then Q intersects at the
maximum 2n cubes in Dnk (see �gure 2). Let R1, . . . , Rm be these cubes, with m 6 2n.

2k

Q1

Q2
•

x2

•
x1

Figure 2

If one of these cubes is contained in a cube Qi, we would have x ∈ ∪iQ∗i , which is false. In
fact if there exist some indexes i, j such that Ri ⊂ Qj , we would have on the on hand x ∈ Q
and on the other hand R∗i ⊂ Q∗j . But l(Q) < 2k, so x ∈ R∗i . We �nally got x ∈ Q∗j . Hence the
average of f on each cube {Ri}i is at most λ. Then we have

−
�
Q
f =

1

|Q|

m∑
i=1

�
Q∩Ri

f 6
1

|Q|

m∑
i=1

2kn−
�
Ri

f 6
2kn

2n(k−1)
mλ 6 4nλ.

So we just proved that

{x ∈ Rn : M ′HL > 4nλ} ⊂
⋃
i

Q∗i .

Hence

|{x ∈ Rn : M ′HLf(x) > 4nλ}| 6 2n

∣∣∣∣∣⋃
i

Qi

∣∣∣∣∣ = 2n|{x ∈ Rn : Mdf(x) > λ}|

which is the inequality (2.5). By using (2.5) and (2.6) we �nally have

|{x ∈ Rn : M ′HLf(x) > λ}| .
‖f‖L1(Rn)

λ
,

which concludes the proof.
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3. Maximal Function

3.1. Almost everywhere convergence

There is a relationship between weak (p, q) inequalities and almost everywhere convergence, and
it is given by the following result.

Lemma 3.1. Let (X,µ) be a measure space, 1 6 p, q < ∞ and {Tt}t∈A be a family of linear
operators on Lp(X,µ), with A ⊂ (0,∞). Let t0 ∈ [0,∞] be a limit point of A. We introduce the
maximal operator associated with the family {Tt}t :

T ∗f : x 7−→ T ∗f(x) := sup
t∈A
|Ttf(x)|.

If T ∗ is weak (p, q), then the set{
f ∈ Lp(X,µ) : lim

t→t0
Ttf(x) = f(x) almost everywhere

}
is closed in Lp(X,µ).

Example 3.2. The maximal operator associated to the family {Ar|·|}r>0 is the Hardy-Littlewood
maximal function.

With the same assumptions as in the previous lemma, we obtain the following theorem, which
is a direct consequence from the sequential characterisation of closed spaces.

Theorem 3.3. Futhermore, if we assume that there exist a dense subspace D ⊂ Lp(X,µ) such
that for all f ∈ D

lim
t→t0

Ttf(x) = f(x) for µ-a.e x ∈ X.

Then for all f ∈ Lp(X,µ)

lim
t→t0

Ttf(x) = f(x) for µ-a.e x ∈ X.

Let's demonstrate the lemma.

Proof. Let {fn}n∈N be a sequence of fucntions which converges to another function f in Lp(X,µ)
norm, and such that for all n ∈ N and for µ-almost every x ∈ X, limt→t0 Ttfn(x) = fn(x). We
are going to show that limt→t0 Ttf(x) = f(x) for µ-almost every x ∈ X. We temporarily �x a
real r > 0, and we will see that the quantity µ({x ∈ X : lim supt→t0 |Ttf(x) − f(x)| > λ}) is
equal to 0. In fact we have :

µ({x ∈ X : lim sup
t→t0

|Ttf(x)− f(x)| > λ}) = µ({x ∈ X : lim sup
t→t0

|Tt(f − fn)(x)− (f − fn)(x)| > λ})

6 µ ({x ∈ X : T ∗(f − fn)(x) > λ/2})
+ µ ({x ∈ X : |(f − fn)(x)| > λ/2}) .

We assumed that the T ∗0 is weak (p, q), so the �rst term can be bounded by

.

(‖f‖Lp(X,µ)

λ

)q
which tends to 0 as n→∞. The second term can be bounded by using the inequality of Markov
:

6

(
2‖f‖Lp(X)

λ

)p
and this bound also tends to 0 as n → ∞. Finally µ({x ∈ X : lim supt→t0 |Ttf(x) − f(x)| >
λ}) = 0 for all λ > 0. To conclude, it su�ces to write

µ({x ∈ X : lim sup
t→t0

|Ttf(x)− f(x)| > 0}) 6
∞∑
k=1

µ({x ∈ X : lim sup
t→t0

|Ttf(x)− f(x)| > 1/k}) = 0.
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3.2. Lebesgue di�erentiation theorem

The operators {Ek}k∈Z are linear, and the maximal operator associated is

f ∈ L1
loc(R

n) 7−→ sup
k∈Z
|Ekf | .

Since for all f ∈ L1
loc(R

n), supk∈Z |Ekf | 6 Mdf , this maximal operator is, as the dyadic maximal
function (theorem 2.14), weak (1, 1). Futhermore, we know that if f is continuous then

lim
k→−∞

Ekf(x) = f(x) a.e.

The subspace of continuous function on Rn is dense in L1(Rn), so by the theorem 3.3 we have
the following result :

Proposition 3.4. For all f ∈ L1
loc(R

n),

lim
k→−∞

Ekf(x) = f(x) a.e.

Remarque 1. The proposition holds for f ∈ L1
loc(R

n) because if f ∈ L1(Rn), then fχQ ∈ L1(Rn)
for any dyadic cube Q, so for almost every x ∈ Q and �nally for almost every x ∈ Rn.

We also have a continuous analog of the proposition 3.4, knew as the Lebesgue di�erentiation
theorem. We know that MHL is weak (1, 1). Again, by considering the maximal operator

f ∈ L1
loc(R

n) 7−→ sup
r>0
|Arf |,

we can apply the theorem 3.3 and obtain the followgin result, knew as to be true for the continuous
functions.

Theorem 3.5 (Lebesgue Di�erentiation Theorem). For all f ∈ L1
loc(R

n),

lim
r→0+

−
�
Br

f(x− y)dy = f(x) a.e.

3.3. The Stein's maximal principle

We saw that some weak bounds on an maximal operator can bring some convergence results. In
fact the reverse can be true under some assumptions : it's the Stein maximal principle.

3.3.1. Statement and applications

Theorem 3.6. Let {µj}j∈N be a sequence of �nite Borel measures on Rn. We assume that they
are all supported on a �xed compact Q0 := [−1/2, 1/2)n, ie

∀ j ∈ N, supp(µj) ⊂ Q0.

Let M be a maximal function of the form

Mf(x) = sup
j∈N
|f | ∗ µj(x) (3.1)

where f ∈ Lp(Rn), 1 6 p <∞ and x ∈ Rn. Assume for each f ∈ Lp(Rn) we have

Mf(x) <∞, for all x lying in a set of positive measure.

Then M is weak (p, p).
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The assumptions about the form of the maximal function and about the measures are nec-
essary. In fact the result isn't true all the time. It su�ces to consider the the family of linear
operator

Tk : L1(R) −→ L1(R)

f 7−→ χ[k,k+1]

� 1
0 f

for k ∈ N. Here for f ∈ L1(R) and x ∈ R we clearly have

T ∗f(x) := sup
k∈N
|Tkf(x)| =

∣∣∣∣� 1

0
f

∣∣∣∣ 6 ‖f‖L1(R) <∞.

However T ∗ is not weak (1, 1). If it was the case, we would have for all λ > 0

|{x ∈ R : T ∗f(x) > λ}| = |{x ∈ R :

∣∣∣∣� 1

0
f

∣∣∣∣ > λ}| 6
‖f‖L1(R)

λ
.

By choosing λ :=
∣∣∣� 1

0 f
∣∣∣ /2 (and f such that λ 6= 0), we obtain a contradiction, the left term is

equal to ∞.
We can write an anolog of the Hardy-Littlewood maximal function as a function of the form

(3.1). We introduce the operator

M∗f(x) := sup
0<r<1/2
r∈Q

−
�
Br

|f(x− y)|dy,

where f ∈ L1
loc(R

n) and x ∈ Rn. Let {ri}i∈N be a sequence of rationals such that limi→∞ ri = 0.
By the theorem 3.5 we know that

lim
i→∞
−
�
Bri

f(x− y)dy = f(x)

for almost every x ∈ Rn. In particular, this implies that M∗f(x) < ∞ almost everywhere,
whenever f ∈ L1(Rn), so by the Stein maximal principle asserts that M∗ is weak (1, 1). We can
show that M∗ is weak (1, 1) (and strong (p, p)) if and only if MHL is. In summary,

Lebesgue Di�erentiation Theorem ⇐⇒ Stein's Maximal Principle.

Another application is the study of convergence problem for Fourier integrals. We already
talk about it in the introduction, see theorem 1.4 and theorem 1.5. We can use the Stein's
maximal principle and the theory of the maximal function to study some convergence problems.

De�nition 3.7. Let f ∈ Lp(Rn), 1 6 p 6 2. We de�ne the Carleson maximal operator by

Cf(x) := sup
R>0
|SRf(x)|

for x ∈ Rn.

In view of the theorem 3.3, the almost everywhere convergence questions for Fourier integrals
are equivalent to a weak (p, p) bound for the Carleson maximal operator C.

Proposition 3.8. Let 1 6 p 6 2. The following are equivalent :

(i) For all f ∈ Lp(Rn)

lim
R→∞

SRf(x) = f(x), for almost every x ∈ Rn.

(ii) C is weak (p, p).
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Proving some bounds for the operator C is a very di�cult task. We often consider an analog
version of the Carleson maximal operator, which is easier to bound, and still gives us some
interesting results.

De�nition 3.9. Let f ∈ Lp(Rn), 1 6 p 6 2. We de�ne the lacunary Carleson maximal

operator by
Clacf(x) := sup

k∈N
|S2kf(x)|

for x ∈ Rn.

Let's move on the proof of the Stein's maximal principle.

3.4. Proof

Before proving the Stein's maximal principle, we present three technical lemmas, the proofs of
these results can be found in [6].

Lemma 3.10 (Local reduction). Let M be a maximal function of the form (3.1), and 1 6 p <
∞. Assume that for all λ > 0 and for all f ∈ Lp(Rn) with supp(f) ⊂ Q∗0 := [−1, 1)n we have

|{x ∈ Q0 : Mf(x) > λ}| .
(‖f‖Lp(Rn)

λ

)p
.

Then M is weak (p, p).

Lemma 3.11 (Random translation). Let E ⊂ Q0 be a measurable set with |E| > 0. Then there
exist some vectors x1, . . . , xJ ∈ Q∗0 with J . 1/|E|, such that∣∣∣∣∣∣Q0 ∩

J⋃
j=1

(E + xj)

∣∣∣∣∣∣ > 1/2.

Lemma 3.12 (Borel�Cantelli-type lemma). Let (Fk)k∈N∗ be a sequence of measurables subsets
of Rn such that

∞∑
k=1

|Fk| = +∞.

Then there exists a sequence of vectors (xk)k∈N∗ such that

lim sup
k→+∞

(Fk + xk) =

∞⋂
k=1

∞⋃
j=k

(Fj + xj) = Rn\N,

for some null set N ⊂ Rn. Almost every x ∈ Rn lies in in�nitely many of the translated sets
Ek + xk.

We can pass to the proof of the Stein's maximal principle.

Proof. We are. going to prove the theorem via the negation. Assume thatM is not strong (p, p).
By the lemma 3.10, there exists a sequence {gk} ∈ Lp(Rn) and real values λk > 0 such that

gk > 0 and |{x ∈ Q0 : Mgk(x) > λk}| >
(
k2k

λk
‖gk‖Lp(Rn)

)p
for all k ∈ N. By homogeneity, we can replace gk by λk

k gk, and so without loss of generality we
may assume that

|{x ∈ Q0 : Mgk(x) > k}| > 2kp‖gk‖pLp(Rn) (3.2)
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for all k ∈ N. Let �x k ∈ N, and denote

Ek := {x ∈ Q0 : Mgk(x) > k}.

In view of the above, |Ek| is large relative to ‖gk‖pLp(Rn), it may still have small measure in

absolute terms. We are going to apply the lemma 3.11 on the sets Ek to ensure that |Ek| is large
enough. Let xk1, . . . x

k
Jk

be the sequence given by the lemma with Jk . 1/|Ek|. Let

Fk := Q0 ∩
Jk⋃
j=1

Ek + xk,j

and
fk(x) := sup

16 j 6 Jk
g̃k,j(x), ∀x ∈ Rn

where g̃k,j(x) := gk(x− xk,j) (the translate). Note that for x ∈ Ek + xk we have by (3.2)

Mfk(x) > sup
16 j 6 Jk

Mg̃k,j(x) > k.

So
Fk ⊂ {x ∈ Q0 : Mfk(x) > k}.

By applying the lemma 3.11 we see that

|{x ∈ Q0 : Mfk(x) > k}| > |Fk| > 1/2.

On the other hand, the Lp-norms remain small. In fact, since for all x ∈ Rn |fk(x)|p 6∑Jk
j=1 |g̃k,j(x)|p, it follows that

‖fk‖pLp(Rn) 6
Jk∑
j=1

‖g̃k,j‖pLp(Rn) = Jk‖gk‖pLp(Rn),

and then

‖fk‖pLp(Rn) . 2−kp. (3.3)

Now we are going to use the functions fk to build another function f which will be very bad for
the maximal function. The sets satisfy |Fk| > 1/2 and clearly

∑∞
k=1 |Fk| = ∞. So the lemma

3.12 gives us a sequence of translates (xk)k∈N∗ such that

lim sup
k→+∞

(Fk + xk) =
∞⋂
k=1

∞⋃
j=k

(Fj + xj) = Rn\N,

where N ⊂ Rn is a null set. We de�ne f by

f(x) := sup
k∈N

fk(x), ∀x ∈ Rn.

Then

{x ∈ Q0 : Mf(x) =∞} =
∞⋂
k=1

∞⋃
j=k

{x ∈ Q0 : Mf(x) > j}

⊃ Q0 ∩
∞⋂
k=1

∞⋃
j=k

(Fj + xj) = Q0\N.

Since |N | = 0, Mf(x) =∞ for almost every x ∈ Q0. On the other hand, with (3.3) we have

‖f‖pLp(Rn) 6
∞∑
k=1

‖fk‖pLp(Rn) .
∞∑
k=1

<∞,

so we get a contradiction.
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3.5. Other geometric maximal function

We give here some examples of geometric maximal function and their main results. We de�ned
a maximal function on balls (and on cubes), with the Hardy-Littlewood maximal function. We
can wonder what happend if we consider some maximal functions on other geometric shape. In
fact it becomes very complicated very quickly.

3.5.1. The Strong maximal function

Let's begin by de�ne a maximal function on rectangles with sides parallel to the coordinate axes.
This function is called the strong maximal function, and its de�ned as below.

De�nition 3.13. For f ∈ L1
loc(R

n), we de�ne the strong maximal function by

Mstf(x) = sup
r1,...,rn>0

−
�
∏n

i=1[−ri,ri]
|f(x− y)|dy

where x ∈ Rn.

Mst has not the same behaviour as MHL. In fact, we can show that for 1 < p 6 ∞, Mst is
strong (p, p), as MHL. However the strong maximal function is not weak (1, 1). We can �nd a
proof of these results in [6].

3.5.2. The spherical maximal function

Let σ be the surface area measure on Sn−1. We de�ne a maximal function on the sphere Sn−1.

De�nition 3.14. For f ∈ C0(Rn), we de�ne the spherical maximal function by

Mσf(x) := sup
r>0
−
�
Sn−1

|f(x− ry)|dσ(y)

where x ∈ Rn.

We have the following result for n > 3.

Theorem 3.15 (Stein, 1976). Let f ∈ Lp(Rn), then

‖Mσf‖Lp(Rd) .p ‖f‖Lp(Rd)

for all n
n−1 < p 6 ∞.

This result is not very di�cult to prove, it is based on geometrical estimations and on some
basic tools of harmonic analysis (discretisation, duality, ... ). The result for n = 2 have been
proved ten years later by Bourgain.

Theorem 3.16 (Bourgain, 1986). Let f ∈ Lp(R2), then

‖Mσf‖Lp(R2) .p ‖f‖Lp(Rd)

for all 2 < p 6 ∞.

Let us explain what goes wrong with the case n = 2. In the proof of the Stein's theorem, we

have to integrate the function t 7−→ (1− t2)
n−3
2 on [−1, 1], but it fails if n = 2. In our problem

it comes from the value of the intersection of tangent circles of a certain thickness δ. In fact if
C1, C2 are such circles, we would have

|C1 ∩ C2| ∼ δ3/2.

See the reference [7] for more details.
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3.5.3. The Nikodym maximal function

Let's now consider the set RkN for each N, k ∈ N∗ of all rectangles in Rn centered at the
origin and with the dimension a× · · · × a︸ ︷︷ ︸

n−k

× aN × · · · × aN︸ ︷︷ ︸
k

, for any a > 0, and with arbitrary

orientation.

De�nition 3.17. For f ∈ L1
loc(R

n), we de�ne the k-plane Nikodym maximal function by

MRk
N
f(x) := sup

R∈Rk
N

−
�
R
|f(x− y)|dy

where x ∈ R2.

Y. Choi, Y. Koh and J. Lee did the followgin conjecture in [2], for f ∈ Lp(Rn).

Conjecture 3.18. For an N large enough :{
‖MRk

N
f‖Lp(Rn) .p,ε N

n
p
−k+ε‖f‖Lp(Rn) if 1 < p 6 n

k

‖MRk
N
f‖Lp(Rn) .p,ε N

ε‖f‖Lp(Rn) if nk 6 p 6 ∞

for all ε > 0.

When k = 1, it was shown by T. Tao in [10] that this conjecture is equivalent to the Kekeya
set conjecture, which is the following (we will not detail the theory about the Minkowsi dimension
here, for more information about it, see [3]).

Conjecture 3.19 (Kakeya set). De�ne a Kakeya set to be any subset E ⊂ Rn which contains
a unit line segment in each direction. Then all Kakeya sets have Minkowski dimension n.

When n > 3, there are only partial results and when k > 2 there is no known result. As
we can see, by considering only rectangles with no assumption on their orientation, the problem
stills open.
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4. The Hilbert Transform

We are going to study here a fundamental operator in analysis, the Hilbert transform. First we
introduce the notion of Fourier multipliers.

4.1. The multipliers

De�nition 4.1. Given m ∈ L∞(R̂n), we de�ne the associated Fourier multiplier operator Tm
by

Tm : L2(Rn) −→ L2(Rn)
f 7−→ F−1(m · Ff).

By the Plancherel's theorem, Tm is well de�ned on L2(Rn) and he's bounded :

‖Tmf‖L2(Rn) = ‖m · f̂‖
L2(R̂n)

6 ‖m‖
L∞(R̂n)

‖f‖L2(Rn). (4.1)

The Fourier multiplier of a function m ∈ L∞(R̂n) is the only operator such that

(Tmf)∧(ξ) = m(ξ)f̂(ξ)

for all ξ ∈ R̂n. Hence the operator Tm acts as a �lter on the frequency of the function f . For
example, ifm = χ[1,∞), the associated Fourier multiplier will be a high-pass �lter. If f ∈ L2(Rn),
then

Tχ[1,∞)
f : x ∈ Rn 7−→

� ∞
1

f̂(ξ)e2iπξ·xdξ.

Since Tm is a bounded operator on L2(Rn), a legitimate question is to ask about its operator
norm ‖Tm‖L2(Rn)→L2(Rn). In fact we know the exact value of this norm.

Lemma 4.2. If m ∈ L∞(R̂n) then

‖Tm‖L2(Rn)→L2(Rn) = ‖m‖
L∞(R̂n)

.

Proof. By the inequality (4.1), we know that

‖Tm‖L2(Rn)→L2(Rn) 6 ‖m‖
L∞(R̂n)

.

We �x an ε > 0 and let A be measurable subset of {ξ ∈ R̂n : |m(ξ)| > ‖m‖
L∞(R̂n)

− ε} whose
measure is �nite and positive (in fact |A| isn't alaways �nised, for example if m is a constant
function). Let f be the function in L2(Rn) such that f̂ = χA. Then

‖Tmf‖L2(Rn) = ‖m · f̂‖
L2(R̂n)

> (‖m‖
L∞(R̂n)

− ε)‖f‖
L2(R̂n)

.

So for all ε > 0
‖Tm‖L2(Rn)→L2(Rn) > ‖m‖

L∞(R̂n)
− ε,

which concludes the proof.

4.2. De�nition

We would like to de�ne the Hilbert transform of a function f ∈ S(R) as the convolution of f
and the function t→ 1/πt, ie

Hf : x ∈ R 7−→ 1

π

�
R

f(x− y)

y
dy.

The issue is that this object is not well de�ned, even on S(R), because of the singularity on 0.
A solution to switch the function t 7−→ 1/t by the tempered distribution vp(1/x), de�ned as

vp(1/x) : D(R) −→ R

ϕ 7−→ 〈vp(1/x), ϕ〉 := lim
ε→0

�
|x|> ε

ϕ(y)

y
dy.



20 BASTIEN LECLUSE

De�nition 4.3. Given a function f ∈ S(R), we de�ne its Hilbert transform Hf as

Hf(x) :=
1

π
vp(1/x) ∗ f(x),

where x ∈ R.

Let f ∈ Lp(R), 1 6 2 6 p and x ∈ R. We would like to study the behavior when R → ∞
of the integral

SRf := Tχ[−R,R]
f =

� R

−R
f̂(ξ)e2iπξ·xdξ,

and determine when it converges to f(x), ie recovering a function f from its Fourier transform
f̂ . We will see that there is a clear link between the operator SR and the Hilbert transform. In
fact for all a < b,

SR =
i

2
(mRHm−R −mRHm−R) (4.2)

where mR is a modulation operator de�ned by

mRf(x) := e2iπRxf(x).

This last result gives to the Hilbert transform even more interest. Let see another equivalent
way to de�ne the Hilbert transform.

De�nition 4.4. For all t > 0 we de�ne the conjugate Poisson kernel Qt : R→ R by

Qt : x ∈ R 7−→ Qt(x) :=
1

π

x

t2 + x2
.

Proposition 4.5. Given a function f ∈ S(R) its Hilbert transform is also de�ned as

Hf = lim
t→0+

Qt ∗ f. (4.3)

Proof. It su�ces to show that

lim
t→0+

Qt =
1

π
vp(1/x)

in S ′(R). The functions {Qt} are in L1
loc(R), so they de�ne distributions. Let ϕ be a test

function in S(R). We need to show that

lim
t→0+

〈Qt, ϕ〉 =
1

π
〈vp(1/x), ϕ〉.

We introduce some truncated versions of the inverse functions, for all ε > 0 we de�ne

ψε : x ∈ R 7−→ 1

x
χ{|x|>ε}.

These functions de�ne some tempered distributions. It's clear that

lim
ε→0+

ψε = vp(1/x)

in S ′(R). Then it su�ces to prove that

lim
t→0+

〈πQt − ψt, ϕ〉 = 0.
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We have

〈πQt − ψt, ϕ〉 =

�
R

xϕ(x)

t2 + x2
dx−

�
|x|>t

ϕ(x)

x
dx

=

�
|x|6 t

xϕ(x)

t2 + x2
dx+

�
|x|>t

ϕ(x)

(
x

t2 + x2
− 1

x

)
dx

=

�
|y|6 1

yϕ(yt)

1 + y2
dy −

�
|y|>1

ϕ(yt)

y(1 + y2)
dy.

Then we apply the dominated convergence theorem

lim
t→0+

〈πQt − ψt, ϕ〉 = ϕ(0)

(�
|y|6 1

y

1 + y2
dy −

�
|y|>1

1

y(1 + y2)
dy

)
= 0.

4.3. Main results

Lemma 4.6. For all ξ ∈ R̂, in the sense of distributions we have(
1

π
vp(1/x)

)∧
(ξ) = −isgn(ξ).

Proof. We saw that 1
πvp(1/x) = limt→0+ Qt. So by the continuity of the Fourier transform on

S ′(R), we have for all ξ ∈ R̂(
1

π
vp(1/x)

)∧
(ξ) = ( lim

t→0+
Qt)
∧(ξ) = lim

t→0+
Q̂t(ξ).

By using the inverse Fourier transform we can easily show that Q̂t(ξ) = −isgn(ξ)e−2πt|ξ|, the
lemma follows by taking the limit as t→ 0+.

This lemma gives us an expression of the Fourier transform of the Hilbert transform of a
Schwartz function. With the following expression, we can easily obtain the identiy (4.2).

Proposition 4.7. Let f be a function in S(R). The Fourier tranform of Hf is given for all
ξ ∈ R̂ by

(Ĥf)(ξ) = −isgn(ξ)f̂(ξ).

This expression lets us de�ne the Hilbert transform on L2(R). Futhermore we have the
following corollary.

Corollary 4.8. Let f be a function in L2(R). Then we have the following results.

(i) Hf ∈ L2(R) and
‖Hf‖L2(R) = ‖f‖L2(R).

(ii)
H(Hf) = −f.

(iii) If g ∈ L2(R) then �
R

Hf · g = −
�
R
f ·Hg.

Proof. (i) We apply the Plancherel's theorem and the proposition 4.7,

‖Hf‖L2(R) = ‖Ĥf‖
L2(R̂)

= ‖f̂‖
L2(R̂)

= ‖f‖L2(R).
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(ii) We �xed a real ξ ∈ R̂.

(H(Hf))∧(ξ) = −isgn(ξ)(Ĥf)(ξ) = (−isgn(ξ))2f̂(ξ) = −f̂(ξ).

Again, we conclude with the Plancherel's theorem.

(iii)

�
R

Hf · g =

�
R̂

(Ĥf)ĝ =

�
R̂
−isgn(ξ)f̂(ξ)ĝ(ξ)dξ =

�
R

ˆ̂
f(x)(

̂̂
Hg)(x)dx = −

�
R
f ·Hg.

Theorem 4.9. Let 1 6 p < ∞. The Hilbert transform H can be extended on Lp(R). Further-
more :

(i) (Riesz) H is strong (p, p) :
‖Hf‖Lp(R) . ‖f‖Lp(R)

for all f ∈ Lp(R).

(ii) (Kolmogorov) H is weak (1, 1)

|{x ∈ R : |Hf(x)| > λ}| .
‖f‖L1(R)

λ

for all f ∈ L1(R), λ > 0.

We will prove the theorem 4.9 in the next section, as a special case to another theorem.
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5. Singular Integrals and the Calderón-Zygmund Theorem

We are going to study a more general theory which implies the results about the Hilbert transform
: the study of singular integrals and in particular the Calderón Zygmund theorem.

5.1. Introduction and application to Hilbert transform

Given a tempered distribution K ∈ S ′(Rn), we will consider the associated convolution operator

K ∗ f (5.1)

for f ∈ S(Rn).

Theorem 5.1 (Calderón-Zygmund). Let K be a tempered distribution. Assume that :

(i) K coincides with a locally integrable function on Rn\{0};

(ii) there exists a constant A such that for all ξ ∈ R̂n

|K̂(ξ)| 6 A, (5.2)

(iii) (Hörmander condition) there exists a constant B such that

sup
y∈Rn

�
|x|>2y

|K(x− y)−K(x)|dx 6 B. (5.3)

Then the convolution operator, de�ned initially on S(Rn), is weak (1, 1) and strong (p, p) for
1 < p <∞.

An continuous linear map S(Rn) −→ C0(Rn) of the form f 7−→ K∗f who respects these three
condtions is called a Calderón-Zygmund operator. The condition (5.3) admits a stronger
version, but often easier to apply.

Proposition 5.2. If K ∈ S ′(Rn) coincides on Rn\{0}) with a function K̃ ∈ C1(Rn\{0} and
assume

|∇K(x)| . |x|−n−1, ∀x ∈ Rn\{0}. (5.4)

Then the condition (5.3) holds.

Proof. The proof is an application of the mean value theorem, see the details on [5].

Before presenting the useful tools to prove the theorem (especially the Calderón�Zygmund
decomposition), let us see how it can be applied to prove the theorem 4.9 on the Hilbert transform.
Let's check the three conditions

(i) The kernel considered here is the principal value 1
πvp(1/x), which is well a tempered

distribution. This principal value coincides with the function t 7−→ 1/πt on R∗, and it's a
function in L1

loc(R).

(ii) By the lemma 4.6 we know that for all ξ ∈ R̂∣∣∣∣( 1

π
vp(1/x)

)∧
(ξ)

∣∣∣∣ = |−isgn(ξ)| 6 1,

so the condition (5.2) holds.

(iii) By the proposition 5.2, the assumption (5.3) is trivially veri�ed.

Then we can conclude that the Hilbert transform is weak (1, 1) and strong (p, p) for 1 < p <∞,
the theorem 4.9 is proved. We will see another application of this theorem in the next section.
Let's move to the proof.
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5.2. The Calderón�Zygmund decomposition

Given an integrable function f ∈ L1(Rn), the main idea of the proof is to break f into two parts,
a good part g and a bad part b, where :

� f = g + b;

� g is essentially bounded;

� b is unbounded but has a small support and has a zero mean.

Let us demonstrate two lemmas which explain the interest of this decomposition. The �rst
one is for the good part g and the second one is for the bad part b.

Lemma 5.3. Suppose K ∈ S ′(Rn) satis�es that K̂ coincides with L∞(R̂n)-function. Then for
all f ∈ S(Rn), K ∗ f ∈ L2(Rn) and

‖K ∗ f‖L2(Rn) 6 ‖K̂‖
L∞(R̂n)

‖f‖L2(Rn).

Proof. By the Plancherel's theorem :

‖K ∗ f‖L2(Rn) = ‖(K ∗ f)∧‖
L2(R̂n)

= ‖K̂ · f̂‖
L2(R̂n)

6 ‖K̂‖
L∞(R̂n)

‖f̂‖
L2(R̂n)

= ‖K̂‖
L∞(R̂n)

‖f‖L2(Rn).

Lemma 5.4. Let K be a kernel of a Calderón-Zygmund operator and let Q be a compact cube.
Suppose f ∈ L1(Rn) has mean zero and is such that suppf ⊂ Q.

‖K ∗ f‖L1(Rn\Q∗) . ‖f‖L1(Rn)

where Q∗ is the cube concentric to Q but with 2
√
n times the side-length.

Proof. Assume that f is not zero almost everywhere, otherwise the result is trivial. Hence we
can assume that |Q| > 0. We �x x ∈ Rn\Q∗. Then for all y ∈ suppf , |x− y| > |Q∗| > 0 so

K ∗ f(x) =

�
Rn

K(x− y)f(y)dy

because a kernel of a Calderón-Zygmund operator coincides with a locally integrable function on
Rn\{0}. Let c be the center of the cube Q. Since f ∈ L1(Rn) has mean zero, we can write

K ∗ f(x) =

�
Rn

(K(x− y)−K(x− c))f(y)dy. (5.5)

Note that if y ∈ Q we have

|x− c| >
√
n l(Q) > 2|y − c|. (5.6)

In fact the minimum distance between x and c is
√
n l(Q), and the maximal distance between y

and c is, by the theorem of Pythagore,
√
n

2 l(Q) (see the �gure below).
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•
c

•
x

•y
2
√
n l(Q)

Q

Q∗

Figure 3: Q and Q∗

Let's conclude the proof. By the Fubini-Tonelli's theorem, using (5.5) we have

‖K ∗ f‖L1(Rn\Q∗) =

�
Rn\Q∗

∣∣∣∣�
Rn

(K(x− y)−K(x− c))f(y)dy

∣∣∣∣dx
6

�
Rn\Q∗

�
Rn

|K(x− y)−K(x− c)||f(y)|dydx

=

�
Rn\Q∗

�
Q
|K(x− y)−K(x− c)||f(y)|dydx.

By using again the Fubini-Tonelli's theorem we obtain

‖K ∗ f‖L1(Rn\Q∗) 6
�
Q

(�
Rn\Q∗

|K(x− y)−K(x− c)|dx

)
|f(y)|dy.

By (5.6), we know that Rn\Q∗ ⊂ {x ∈ Rn : |x− c| > 2|y − c|} if y ∈ Q. So it comes

‖K ∗ f‖L1(Rn\Q∗) 6
�
Q

(�
|x−c|> 2|y−c|

|K(x− y)−K(x− c)|dx

)
|f(y)|dy

=

�
Q

(�
|x−c|> 2|y−c|

|K((x− c)− (y − c))−K(x− c)|dx

)
|f(y)|dy

=

�
Q

(�
|x|> 2|y|

|K((x− y))−K(x)|dx

)
|f(y)|dy

and by the assumption (5.3) in the de�nition of Calderón-Zygmund operator we obtain the
desired result.

Let K be a kernel of a Calderón-Zygmund operator. Assume that a function f ∈ L1(Rn) is
given and we are able to break it as f = g + b, as in the introduction. Since g is bounded, the
lemma 5.3 can gives us a good bound for K ∗ g. Heuristically, for the bad part we have

‖K ∗ b‖L1(Rn) = ‖K ∗ b‖L1(Q∗) + ‖K ∗ b‖L1(Rn\Q∗) . |Q∗|+ ‖K ∗ f‖L1(Rn\Q∗)

and then by the lemma 5.4 and the fact that Q is small, this bounded should be small. In fact
it's not that simple, the support of b will be contained in an union of cubes, but it's the main
idea. Then some interpolation arguments will conclude the proof in Lp(Rn) for 1 < p <∞.
Let's move on the proof of the decomposition. The proof is based on a fundamental lemma :
the Calderón-Zygmund covering lemma, which gives us a decomposition of Rn adapted to an
integrable function.

Lemma 5.5 (Calderón-Zygmund covering lemma). Let f ∈ L1(Rn) and λ > 0. Then there
exists a collection of disjoint dyadic cubes Q ⊂ Dn such that :
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(i) for almost every x /∈
⋃
Q∈QQ, |f(x)| 6 λ;

(ii) ∣∣∣∣∣∣
⋃
Q∈Q

Q

∣∣∣∣∣∣ 6 ‖f‖L1(Rn)

λ
;

(iii) for all Q ∈ Q

λ < −
�
Q
|f | 6 2nλ.

Proof. We are going the weak-type (1, 1) of the dyadic maximal function, theorem 2.14, and its
corollary (proposition 3.4). As in the proof of theorem 2.14, we form for k ∈ Z the sets

Ωk := {x ∈ Rn : Ekf(x) > λ and Ejf(x) 6 λ if j > k}.

and decompose each into disjoint dyadic cubes contained in Dk. All of these cubes form the
family Q.

(i) Let x /∈ ∪Q∈QQ. Then for every k ∈ Z, x /∈ Ωk so Ekf(x) 6 λ. Then by the proposition
3.4, we obtain the results by taking the limit as k →∞.

(ii) The second point is just the weak (1, 1) inequality of the theorem 2.14.

(iii) Let Q ∈ Q. According to the de�nition of the sets Ωk, the average of f over the cubes Q
is greater than λ :

−
�
Q
f > λ.

Let Q∗ be the cube with the same center as Q but such that l(Q∗) = 2l(Q). So by the
de�nition of the sets Ωk the average of f over Q∗ is at most λ. Hence

−
�
Q
f 6

|Q∗|
|Q|
−
�
Q∗
f 6 2nλ.

We can �nally prove the desired decomposition result.

Corollary 5.6 (Calderón-Zygmund decomposition). Let f ∈ L1(Rn) and λ > 0. Then there
exists a collection Q ⊂ Dn of disjoint dyadic cubes and some functions g, bQ ∈ L1(Rn) (for
Q ∈ Q) such that

f = g + b, for b :=
∑
Q∈Q

bQ.

where ‖g‖L1(Rn) 6 ‖f‖L1(Rn) and for all Q ∈ Q, ‖bQ‖L1(Rn) 6 2‖f‖L1(Q). Furthermore :

(i) for almost every x ∈ Rn,
|g(x)| 6 2nλ;

(ii) for all Q ∈ Q

supp(bQ) ⊂ Q et
�
Q
bQ = 0;

(iii) ∣∣∣∣∣∣
⋃
Q∈Q

Q

∣∣∣∣∣∣ 6 1

λ
‖f‖L1(Rn).
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Proof. Let Q be the collection of cubes given by the lemma 5.5. Let's de�ne the bad functions
for all Q ∈ Q:

bQ :=

(
f −−

�
Q
f

)
χQ,

and let the good function be

g := f −
∑
Q∈Q

bQ.

These �rst results are clear :

� supp(bQ) ⊂ Q;

�

�
Q bQ = 0;

� ‖bQ‖L1(Rn) 6 2‖f‖L1(Rn).

On the one hand, for all x /∈ ∪Q∈QQ, g(x) = f(x) 6 λ 6 2nλ. On the other hand, if x ∈ Q for
some Q ∈ Q,

|g(x)| =
∣∣∣∣−�
Q
f

∣∣∣∣ 6 −�
Q
|f | 6 2nλ.

So for almost every x ∈ Rn, |g(x)| 6 2nλ, we got the �rst point. We just have to prove that
‖g‖L1(Rn) 6 ‖f‖L1(Rn).

‖g‖L1(Rn) =

�
Rn\

⋃
Q∈QQ

|g|+
�
⋃

Q∈QQ
|g|,

and since the cubes are disjoint

‖g‖L1(Rn) 6
�
Rn\

⋃
Q∈QQ

|f |+
∑
Q∈Q

�
Q
|g|

and
�
Q |g| 6

�
Q |f |, which concludes the proof.

5.3. Proof

We can now prove the Calderón-Zygmund theorem. Let K be a tempered distribution as in the
theorem 5.1. We note T the convolution operator associated to the kernel K :

Tf := K ∗ f,

for all f ∈ S(Rn).

5.3.1. Step 1 : Reduction of the problem.

In fact it su�ces to show that T is weak (1, 1). We use interpolation and duality. Assume that
T is weak (1, 1). By the lemma 5.3, we know that

‖Tf‖L2(Rn) . ‖K̂‖L∞(R̂n)
‖f‖L2(Rn)

holds whenever f ∈ S(Rn). Since thee space S(Rn) is dense in L2(Rn), this result can be
extended to all f ∈ L2(Rn). So T is strong (p, p). By using the theorem 2.9, this result of
interpolation asserts that T is strong (p, p) for 1 < p 6 2. Now let 2 < p <∞, and denote p′ its
conjugate index. For all f, g ∈ S(Rn),

〈Tf, g〉 = 〈f, T ∗g〉
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where 〈·, ·〉 denote the inner product in L2(Rn), and T ∗ the adjoint operator of T . It's clear that
the adjoint operator T ∗ has kernel K∗ = K(−·) which also satis�es (5.2) and (5.3), so T ∗ is also
a Calderón-Zygmund operator. Since 1 < p′ < 2, T ∗ is srong (p′, p′). Let f ∈ Lp(Rn). By using
the extremal equality of Holder's inequality we have

‖Tf‖Lp(Rn) = sup

{∣∣∣∣�
Rn

Tf · g
∣∣∣∣ : g ∈ Lp

′
(Rn), ‖g‖Lp′ (Rn) 6 1

}
= sup

{
|〈f, T ∗g〉| : g ∈ Lp

′
(Rn), ‖g‖Lp′ (Rn) 6 1

}
6 ‖f‖Lp(Rn) sup

{
‖T ∗g‖Lp′ (Rn) : g ∈ Lp

′
(Rn), ‖g‖Lp′ (Rn) 6 1

}
and because T ∗ is strong (p′, p′)

‖Tf‖Lp(Rn) . ‖f‖Lp(Rn).

5.3.2. Step 2 : Proof of the weak (1, 1) bound.

Now we have to prove the weak-type (1, 1) of T . Let f ∈ L1(Rn) and λ > 0. We use the
Calderón-Zygmund decomposition on the function f = g + b, where g, b are the good and bad
parts of f . We write

|{x ∈ Rn : |Tf(x)| > λ}| 6 |{x ∈ Rn : |Tg(x)| > λ/2}|+ |{x ∈ Rn : |Tb(x)| > λ/2}|. (5.7)

Since g is bounded almost everywhere, the �rst term is easly bounded with the Markov's in-
equality :

|{x ∈ Rn : |Tg(x)| > λ/2}| = |{x ∈ Rn : |Tg(x)|2 > λ2/4}|

6
4

λ2
‖Tg‖L2(Rn).

Then by the lemma 5.3 and the (i) of the corollary 5.6 we obtain

|{x ∈ Rn : |Tg(x)| > λ/2}| .
‖f‖L1(Rn)

λ
. (5.8)

For the second term we have to use the collection of cubes Q ⊂ Dn given by the decomposition
of Calderón-Zygmund. We have

|{x ∈ Rn : |Tb(x)| > λ/2}| 6

∣∣∣∣∣∣
⋃
Q∈Q

Q∗

∣∣∣∣∣∣+

∣∣∣∣∣∣
x /∈ ⋃

Q∈Q
Q∗ : |Tb(x)| > λ/2


∣∣∣∣∣∣ .

By the third point of the corollary 5.6, we have∣∣∣∣∣∣
⋃
Q∈Q

Q∗

∣∣∣∣∣∣ . ‖f‖L1(Rn)

λ

where the constant depends on n. And by the Markov's inequality

|{x ∈ Rn\
⋃
Q∈Q

Q : |Tb(x)| > λ/2}| 6 2

λ
‖Tb‖L1(Rn\∪Q∈QQ).

By using the lemma 5.4, the corollary 5.6 and since the cubes are disjoint

‖Tb‖L1(Rn\∪Q∈QQ) = ‖
∑
Q∈Q

TbQ‖L1(Rn\∪Q∈QQ) .
∑
Q∈Q
‖bQ‖L1(Q) . ‖f‖L1(Rn).

So

|{x ∈ Rn : |Tb(x)| > λ/2}| .
‖f‖L1(Rn)

λ
. (5.9)

By the equalities (5.7), (5.8) and (5.9) we �nally obtain the weak (1, 1) bound.
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6. The Hörmander�Mikhlin Multiplier Theorem

We are going to present a theorem with many application, especially in PDEs. Its a direct
application of the Calderón-Zygmund theory.

6.1. Littlewood-Paley decomposition

Here we are going to decompose a function f into a sum of functions with localized frequencies.
Fix η ∈ C∞(Rn) satisfying

supp(η) ⊂ [−2, 2] and η(r) = 1 if |r| 6 1.

We de�ne β, βj ∈ C∞c (R), for j ∈ Z by

β : R −→ R
r 7−→ η(r)− η(2r)

and

βj := β(2−j ·).

Hence we have

supp(β) ⊂ [−2,−1/2] ∪ [1/2, 2] and supp(βj) ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2j+1]

for all j ∈ Z, and for all r ∈ R\{0} ∑
j∈Z

βj(r) = 1. (6.1)

We identify the functions βj on R̂ and the radial functions βj(| · |) on R̂n. Then we consider

the Littlewood-Paley functions βj ∈ C∞(R̂n). So each function βj is supported in the dyadic
annulus

Aj := {ξ ∈ R̂n : 2j−1 6 |ξ| < 2j+1}.

and the collection of all such functions forms a smooth partition of unity of R̂n adapted to the
covering {Aj}j∈Z. This partition of unity is called the smooth Littlewood�Paley decompo-

sition.

6.2. The Hörmander�Mikhlin multiplier theorem

This theorem is an application of the Littlewood-Paley decomposition as well as an application
of the Calderón-Zygmund theory. We de�ned the notion of Fourier multipliers earlier, see the
de�nition 4.1.

Theorem 6.1 (Hörmander-Mikhlin multipliers). Suppose m ∈ L∞(R̂n) is smooth away from
zero and is such that ∣∣∂αξm(ξ)

∣∣ .α |ξ|−|α|

for all ξ ∈ R̂n\{0} and for all multi-index α ∈ Nn. Then the Fourier multiplier operator Tm
extends to a bounded operator on Lp(Rn), for 1 < p <∞.

By abuse of language, such a function is called a Hörmander-Mikhlin multipliers.

Examples 6.2. (i) The Littlewood-Paley functions βj for j ∈ Z are Hörmander-Mikhlin mul-
tipliers.
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(ii) For N > 2 et 1 6 j 6 N , we consider the multiplier

mj(ξ) := −i ξj
|ξ|
, ∀ ξ ∈ R̂\{0}.

The operators Rj := Tmj are called the Riesz transform. It's clear that they are some
Hörmander-Mikhlin multipliers. So by the theorem 6.1, Rj extends to all Lp(Rn), 1 < p <
∞, and for all f ∈ Lp(Rn)

‖|Rjf‖Lp(Rn) . ‖f‖Lp(Rn).

Furthermore, for all 1 6 j, k 6 n and for all f ∈ S(Rn) we have

∂2
xj ,xk

f = −RjRk∆f (6.2)

(it su�ces to determinate the Fourier transform of both term).

The Calderón-Zygmund has a large range of applications to PDE, the equality (6.2) gives us
an example.

Corollary 6.3. Let 1 < p <∞ and 1 6 j, k 6 n. Then for all f ∈ S(Rn)

‖∂2
xj ,xk

f‖Lp(Rn) .p,n ‖∆f‖Lp(Rn).

Proof. It su�ces to use the equality (6.2) and the theorem 6.1.

6.3. Proof

First, let's explain the main ideas of the proof in a heuristic way. Let m be a Hörmander-
Mikhlin multipliers, and K := m̌ the kernel associated to the multiplier Tm. We know that

Tmf = K ∗ f, for all f ∈ S(Rn). (6.3)

We want to apply the Calderón-Zygmund on K. Assume we know that K coincides with a
function away from the origin. Then if m ∈ L1(R̂n), K is a function de�ned by

K : x ∈ Rn 7−→
�
R̂n

m(ξ)e2iπx·ξdξ.

However, we don't know if m is integrable. Then we use the smooth Littlwood-Paley decompo-
sition and we decompose m as

m =
∑
j∈Z

mj , where mj := mβj . (6.4)

For all j ∈ Z, supp(mj) ⊂ Aj so mj ∈ L1(R̂n). Now we can work on each pieces Kj of K, and
at the end of the day we get back K via a limiting procedure. Let's see the details.

Proof. We assumed that m ∈ L∞(R̂n), since K = m̌, the condition (5.2) holds. We decompose
m as in (6.4),

Tmf =
∑
j∈Z

Tmjf, ∀ f ∈ L2(Rn),

the convergence holds in L2(Rn). Let's check that point. Let f ∈ L2(Rn) and N ∈ N. Then by
the Plancherel's theorem

‖Tmf −
N∑

j=−N
Tmjf‖L2(Rn) = ‖

f̂ − N∑
j=−N

βj f̂

m‖
L2(R̂n)

6 ‖m‖
L∞(R̂n)

‖f̂ −
N∑

j=−N
βj f̂‖L2(R̂n)

.
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Then we use the dominated convergence theorem and the equality (6.1) to conclude. Sincem and
the βj are Hörmander-Mikhlin multipliers, the productmj is also Hörmander-Mikhlin multipliers

(the details are left to the reader), so for all ξ ∈ R̂n\{0} and all α ∈ Nn
∣∣∣∂αξmj(ξ)

∣∣∣ .α |ξ|−|α|.
Furthermore supp(mj) ⊂ Aj , so by integrating we have

‖∂αξmj(ξ)‖L1(R̂n)
.α

�
Aj

|ξ|−|α|dξ

.α 2α2−jα|Aj |

and we �nally obtain

‖∂αξmj(ξ)‖L1(R̂n)
.α 2−jα2jn. (6.5)

Taking α = 0, we see mj ∈ L1(R̂n), and so we can de�ne Kj the kernel of the multiplier Tmj by

Kj(x) =

�
R̂n

mj(ξ)e
2iπx·ξdξ, ∀x ∈ Rn,

for x ∈ Rn.

Now we have to realise the kernel K is the distributional limit of the series
∑

j∈ZKj , and to
show this limits agrees with a function away from zero. For x ∈ Rn\{0}, we de�ne the vector
�elds

〈x, ∂ξ〉 :=
n∑
k=1

xk∂ξk .

In view of the di�erential identity

1

2iπ

〈x, ∂ξ〉
|x|2

e2iπx·ξ = e2iπx·ξ,

by repeating integration-by-parts, and since supp(mj) is compact, we obtain for all N ∈ N,

Kj(x) =

(
−1

2iπ|x|2

)N �
R̂n

e2iπx·ξ〈x, ∂ξ〉Nmj(ξ)dξ. (6.6)

Combining the equality (6.6) with the inequaliy (6.5), we obtain for all N ∈ N,

|Kj(x)| .N 2jn(1 + 2j |x|)−N . (6.7)

So the serie
∑

j∈ZKj converges pointwise and absolutely on Rn\{0} to a function K̃. By taking
N = n+ 1 in (6.7), we have∑

j∈Z
|Kj(x)| .

∑
j∈Z

2j |x|6 1

2jn +
∑
j∈Z

2j |x|>1

2−j |x|−(n+1).

Then by evaluating these geometric series, we see that K̃ satis�es |K̃(x)| . |x|−n. The pointwise
limit (6.4) also holds in the sense of distributions. Then

K =
∑
j∈Z

Kj

where the convergence is in the sense of distributions. Then K agrees with K̃ away from zero,
so we drop the tilde notation.
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We �nally have to show that K satis�es the Hörmander condition (5.3). We will show that
K satis�es the Hörmander stronger condition, see the proposition 5.2. We have

∂xjKj(x) = 2iπ

�
R̂n

ξjmj(ξ)e
2iπx·ξdξ.

As above we can show that for all N ∈ N

|∂xKj(x)| .N 2j(n+1)(1 + 2j |x|)−N

and for all x ∈ Rn\{0}, by taking N = n+ 2,

|∇K(x)| . |x|−n−1.

Then K satis�es the condition (5.3), so by applying the theorem 5.1 we conclude the proof.
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